Python Reference Manual
Release 2.3.3

Guido van Rossum

Fred L. Drake, Jr., editor

December 19, 2003

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-level
built in data structures, combined with dynamic typing and dynamic binding, make it very attractive for rapid applica-
tion development, as well as for use as a scripting or glue language to connect existing components together. Python’s
simple, easy to learn syntax emphasizes readability and therefore reduces the cost of program maintenance. Python
supports modules and packages, which encourages program modularity and code reuse. The Python interpreter and
the extensive standard library are available in source or binary form without charge for all major platforms, and can be
freely distributed.

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be exact
and complete. The semantics of non-essential built-in object types and of the built-in functions and modules are
described in th&@ython Library Referencd-or an informal introduction to the language, seeRkéon Tutorial For

C or C++ programmers, two additional manuals exisktending and Embedding the Python Interpretescribes the
high-level picture of how to write a Python extension module, andPyteon/C API Reference Manudéscribes the
interfaces available to CAS- programmers in detail.

CONTENTS

Introduction 1

1.1 Notation o e 1
Lexical analysis 3

2.1 LINeSIUCIUre o e e e 3
2.2 Othertokens. e 6
2.3 ldentifiersand keywords L e e e 6
2.4 Literals. e e e e e e e 7
2.5 Operators e e 10
2.6 Delimiters e e 10
Data model 13

3.1 Objects,valuesandtypes e 13
3.2 Thestandardtype hierarchy. 14
3.3 Specialmethodnames. e 20
Execution model 33

4.1 Namingandbinding. e 33
4.2 EXCEPtiONS. e e e e 34
Expressions 37

5.1 Arithmetic CONVersions e 37
5.2 AIOMS . . . o e e 37
5.3 Primaries. 39
5.4 The power operator. o o v i i i e e e 42
55 Unaryarithmeticoperations 43
5.6 Binary arithmeticoperations. e 43
5.7 Shiftingoperations e e 44
5.8 Binary bit-wise operations e e e e e 44
5.9 COMPAriSONS. . . . o v v e e e e 44
5.10 Boolean operations. e 46
5,11 Lambdas. 46
5.12 EXpression lists e e e 46
5.13 Evaluationorder. 47
5.14 SUMMATY. o o e e e e e e e e e e e 47
Simple statements 49

6.1 Expressionstatements. e e e 49
6.2 Assertstatements. e e e 49
6.3 Assignmentstatements. L L e 50

6.4 Thepass statement. e e e 52
6.5 Thedel statement e e 52
6.6 Theprint statement. L 53
6.7 Thereturn statement e e e e e e e e 53
6.8 Theyield statement. e 53
6.9 Theraise statement. e 54
6.10 Thebreak statement. e e 54
6.11 Thecontinue statement e e e 55
6.12 Theimport statement. e 55
6.13 Theglobal statement. e e 57
6.14 Theexec statement. e e e 57
7 Compound statements 59
7.1 Theif statement e e e e e 60
7.2 Thewhile statement. 60
7.3 Thefor statement e 60
7.4 Thetry statement 61
7.5 Functiondefinitions. L e e e 62
7.6 Classdefinitions. e e e e e 63
8 Top-level components 65
8.1 Complete Python programs o o e 65
8.2 Fileinput. e e e 65
8.3 Interactive INpUt. e e e 65
8.4 EXPressioninpuL e e e e 66
A History and License 67
A.1l Historyofthesoftware e e 67
A.2 Terms and conditions for accessing or otherwise using Python 68
Index 71

CHAPTER
ONE

Introduction

This reference manual describes the Python programming language. It is not intended as a tutorial.

While | am trying to be as precise as possible, | chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but will
leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up implementing quite a different
language. On the other hand, if you are using Python and wonder what the precise rules about a particular area of the
language are, you should definitely be able to find them here. If you would like to see a more formal definition of the
language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation may
change, and other implementations of the same language may work differently. On the other hand, there is currently
only one Python implementation in widespread use (although a second one now exists!), and its particular quirks are
sometimes worth being mentioned, especially where the implementation imposes additional limitations. Therefore,
you'll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are not documented here,
but in the separatéython Library Referencdocument. A few built-in modules are mentioned when they interact in a
significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following style
of definition:

name: Ic_letter (Ic_letter | "_")*

LU

Ic_letter: "a".."z

The first line says that aameis anlc _letter followed by a sequence of zero or mdee_letter s and under-
scores. Aric _letter in turn is any of the single charactew through ‘z’. (This rule is actually adhered to for
the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A verti¢glibarsed to separate
alternatives; it is the least binding operator in this notation. A gtameans zero or more repetitions of the preceding

item; likewise, a plus{) means one or more repetitions, and a phrase enclosed in square bradkétméans zero

or one occurrences (in other words, the enclosed phrase is optional. arte+ operators bind as tightly as possible;
parentheses are used for grouping. Literal strings are enclosed in quotes. White space is only meaningful to separate
tokens. Rules are normally contained on a single line; rules with many alternatives may be formatted alternatively
with each line after the first beginning with a vertical bar.

In lexical definitions (as the example above), two more conventions are used: Two literal characters separated by three
dots mean a choice of any single character in the given (inclusive) rargecafcharacters. A phrase between angular
brackets €...>) gives an informal description of the symbol defined; e.g., this could be used to describe the notion
of ‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

2 Chapter 1. Introduction

CHAPTER
TWO

Lexical analysis

A Python program is read bygarser. Input to the parser is a streamtokens generated by thiexical analyzer This
chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bitscii character set for program text. New in version 2.3: An encoding declaration can be used
to indicate that string literals and comments use an encoding different from ASCII.. For compatibility with older
versions, Python only warns if it finds 8-bit characters; those warnings should be corrected by either declaring an
explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.

The run-time character set depends on the I/O devices connected to the program but is generally a sugenset of

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1
(anAscii superset that covers most western languages that use the Latin alphabet), but it is possible that in the future
Unicode text editors will become common. These generally use the UTF-8 encoding, which is afsnissuperset,

but with very different use for the characters with ordinals 128-255. While there is no consensus on this subject yet, it
is unwise to assume either Latin-1 or UTF-8, even though the current implementation appears to favor Latin-1. This
applies both to the source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a numberlogical lines

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical line
is constructed from one or mopdysical linesy following the explicit or implicitline joining rules.

2.1.2 Physical lines

A physical line ends in whatever the current platform’s convention is for terminating lines.NOq, this is theascii
LF (linefeed) character. On Windows, it is thecil sequence CR LF (return followed by linefeed). On Macintosh, it
is theAascil CR (return) character.

2.1.3 Comments

A comment starts with a hash charactéy that is not part of a string literal, and ends at the end of the physical line. A
comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments are ignored
by the syntax; they are not tokens.

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression
‘coding[=:]\s*([\w- _.]+) 4 this comment is processed as an encoding declaration; the first group of
this expression names the encoding of the source code file. The recommended forms of this expression are

-*- coding: <encoding-name> -*-

which is recognized also by GNU Emacs, and

vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenar’s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order mark
("\xef\xbb\xbf’), the declared file encoding is UTF-8 (this is supported, among others, by Microsutijsad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical
analysis, in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are

converted to Unicode for syntactical analysis, then converted back to their original encoding before interpretation

starts. The encoding declaration must appear on a line of its own.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash charadgteas follows: when a physical
line ends in a backslash that is not part of a string literal or comment, it is joined with the following forming a single
logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24\
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash does
not continue a token except for string literals (i.e., tokens other than string literals cannot be split across physical lines
using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without using
backslashes. For example:

month_names = [Januari’, 'Februari’, 'Maart’, # These are the
"April’, 'Mer’, "Juni’, # Dutch names
"Juli’, 'Augustus’, 'September’, # for the months

'Oktober’, 'November’, 'December’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly continued
lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

4 Chapter 2. Lexical analysis

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one
containing not even whitespace or a comment) terminates a multi-line statement.

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of the
line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to and
including the replacement is a multiple of eight (this is intended to be the same rule as usedx)y The total

number of spaces preceding the first non-blank character then determines the line’s indentation. Indentation cannot be
split over multiple physical lines using backslashes; the whitespace up to the first backslash determines the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to use
a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different platforms
may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations above.
Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance, they may
reset the space count to zero).

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, using a stack, as
follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again. The
numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each logical
line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is larger, it is
pushed on the stack, and one INDENT token is generated. If it is smalteusitbe one of the numbers occurring on

the stack; all numbers on the stack that are larger are popped off, and for each number popped off a DEDENT token is
generated. At the end of the file, a DEDENT token is generated for each number remaining on the stack that is larger
than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
Compute the list of all permutations of |
if len(l) <= 1L:
return [I]
r=1]
for i in range(len(l)):
s = I[:i] + I[i+1:]
p = perm(s)
for x in p:
r.append(lfi:i+1] + Xx)
return r

The following example shows various indentation errors:

2.1. Line structure 5

def perm(): # error: first line indented
for i in range(len(l)): # error: not indented
s = L] + I[i+1:]
p = perm(I[:i] + I[i+1:]) # error: unexpected indent
for x in p:
r.append(l[i:i+1] + x)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation ofreturn r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens
Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can be

used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens ekientifiers keywordsliterals,
operators anddelimiters Whitespace characters (other than line terminators, discussed earlier) are not tokens, but
serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that forms a legal token,
when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to amme$ are described by the following lexical definitions:

identifier = (letter|" _") (letter | digit | ")
letter == lowercase | uppercase

lowercase n= 0 Matlzt

uppercase n= 0 "ANLZY

digit m= """

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved wordkeywordsof the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield
def finally in print

6 Chapter 2. Lexical analysis

Note that although the identifiers can be used as part of the syntaximfoort statements, it is not currently a
reserved word.

In some future version of Python, the identifias andNone will both become keywords.

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns of
leading and trailing underscore characters:

_* Not imported by from module import * . The special identifier .’ is used in the interactive interpreter to
store the result of the last evaluation; it is stored in_théuiltin -~ __ module. When not in interactive mode,
‘_"has no special meaning and is not defined. See section 6.12jffijeet statement.”

Note: The name *’ is often used in conjunction with internationalization; refer to the documentation for the
gettext modulefor more information on this convention.

__*__ System-defined names. These names are defined by the interpreter and it's implementation (including the
standard library); applications should not expect to define additional names using this convention. The set of
names of this class defined by Python may be extended in future versions. See section 3.3, “Special method
names.”

__* Class-private names. Names in this category, when used within the context of a class definition, are re-written
to use a mangled for to help avoid name clashes between “private” attributes of base and derived classes. See
section 5.2.1, “Identifiers (Names).”

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String literals

String literals are described by the following lexical definitions:

[stringprefix](shortstring | longstring)
r] "ut | Mur" | "R"] MUY | "UR™ MU | "uR"

stringliteral
stringprefix

shortstring = """ shortstringitem* "™ | ™ shortstringitem* "™
longstring = """ longstringitem* """

| RLLLILLE |Ongstringitem* RLLLILLE
shortstringitem = shortstringchar | escapeseq

longstringitem longstringchar | escapeseq

shortstringchar <any ASCII character except "\" or newline or the quote>
longstringchar := <any ASCII character except "\">

escapeseq m= "\" <any ASCII character>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the
stringprefix and the rest of the string literal.

In plain English: String literals can be enclosed in matching single quob)ex double quotes’(). They can also be
enclosed in matching groups of three single or double quotes (these are generally refertegl®@soted strings

The backslash\() character is used to escape characters that otherwise have a special meaning, such as newline,
backslash itself, or the quote character. String literals may optionally be prefixed with arléttet R’; such strings

are calledaw stringsand use different rules for interpreting backslash escape sequences. A prefigrofy makes

the string a Unicode string. Unicode strings use the Unicode character set as defined by the Unicode Consortium and

2.4. Literals 7

ISO 10646. Some additional escape sequences, described below, are available in Unicode strings. The two prefix
characters may be combined; in this casémust appear before °.

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
guotes in a row terminate the string. (A “quote” is the character used to open the string, i.e. @ittie)

Unless ant’ or ‘'R prefix is present, escape sequences in strings are interpreted according to rules similar to those
used by Standard C. The recognized escape sequences are:

Escape Sequence Meaning Notes
\ newline Ignored

\\ Backslash\()

\ Single quote’()

\" Double quote'()

\a Ascll Bell (BEL)

\b AScClII Backspace (BS)

\f Ascll Formfeed (FF)

\n Ascli Linefeed (LF)

\N{ namég Character namedamein the Unicode database (Unicode only)

\r Ascll Carriage Return (CR)

\t AScClIl Horizontal Tab (TAB)

\u XXxXX Character with 16-bit hex valuexxx(Unicode only) D)
AU XXXXXXXX Character with 32-bit hex valuexxxxxxUnicode only) 2)
\v Ascil Vertical Tab (VT)

\ 000 ASclI character with octal valueoo 3)
\x hh ASCII character with hex valuleh (4)

Notes:

(1) Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.

(2) Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP) will
be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default). Individual code
units which form parts of a surrogate pair can be encoded using this escape sequence.

(3) Asin Standard C, up to three octal digits are accepted.

(4) Unlike in Standard C, at most two hex digits are accepted.

Unlike Standard C, all unrecognized escape sequences are left in the string unchangfes piaekslash is left in the

string. (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output is more easily
recognized as broken.) It is also important to note that the escape sequences marked as “(Unicode only)” in the table
above fall into the category of unrecognized escapes for non-Unicode string literals.

When ant’ or ‘R prefix is present, a character following a backslash is included in the string without change, and
all backslashes are left in the strinfor example, the string literd\n" consists of two characters: a backslash and

a lowercasen’. String quotes can be escaped with a backslash, but the backslash remains in the string; for example,
r'\"* is avalid string literal consisting of two characters: a backslash and a double rlotejs not a valid string

literal (even a raw string cannot end in an odd number of backslashes). Specifically, string cannot end in a

single backslaslfsince the backslash would escape the following quote character). Note also that a single backslash
followed by a newline is interpreted as those two characters as part of the stitag, a line continuation.

When an t’ or ‘R prefix is used in conjunction with au’ or ‘U prefix, then the\uXXXX escape sequence is
processed whilall other backslashes are left in the stringor example, the string literalr"\u0062\n" consists
of three Unicode characters: ‘LATIN SMALL LETTER B’, ‘REVERSE SOLIDUS’, and ‘LATIN SMALL LETTER
N’. Backslashes can be escaped with a preceding backslash; however, both remain in the string. ASEaXpeXixit,
escape sequences are only recognized when there are an odd number of backslashes.

8 Chapter 2. Lexical analysis

2.4.2 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are allowed,
and their meaning is the same as their concatenation. Theis" 'world’ is equivalent td'helloworld"

This feature can be used to reduce the number of backslashes needed, to split long strings conveniently across long
lines, or even to add comments to parts of strings, for example:

re.compile("[A-Za-z_]" # letter or underscore
"[A-Za-z0-9_]*" # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ operator must be
used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting styles
for each component (even mixing raw strings and triple quoted strings).

2.4.3 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary numbers.
There are no complex literals (complex numbers can be formed by adding a real number and an imaginary nhumber).

Note that numeric literals do not include a sign; a phrase-ikds actually an expression composed of the unary
operator - " and the literall.

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger = integer ("I" | "L")
integer decimalinteger | octinteger | hexinteger

decimalinteger = nonzerodigit digit* | "0"
octinteger = "0" octdigit+

hexinteger = "0" (X" | "X") hexdigit+
nonzerodigit = "ot

octdigit S A

hexdigit 2= digit | "a".."f" | "A"."F"

Although both lower casd ° and upper casd.’ are allowed as suffix for long integers, it is strongly recommended to
always usel'’, since the letterl'’ looks too much like the digit1’.

Plain integer decimal literals that are above the largest representable plain integer (e.g., 2147483647 when using 32-
bit arithmetic) are accepted as if they were long integers instead. Octal and hexadecimal literals behave similarly, but
when in the range just above the largest representable plain integer but below the largest unsigned 32-bit number (on
a machine using 32-bit arithmetic), 4294967296, they are taken as the negative plain integer obtained by subtracting
4294967296 from their unsigned value. There is no limit for long integer literals apart from what can be stored in avail-
able memory. For example, Oxdeadbeef is taken, on a 32-bit machine, as the value -559038737, while Oxdeadbeeffeed
is taken as the value 244837814107885L.

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7 2147483647 0177 0x80000000
3L 79228162514264337593543950336L 0377L 0x100000000L
79228162514264337593543950336 Oxdeadbeeffeed

2.4. Literals 9

2.4.5 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber = pointfloat | exponentfloat
pointfloat = [intpart] fraction | intpart "."
exponentfloat = (intpart | pointfloat) exponent
intpart m= digit+

fraction n= " digit+

exponent = (e | "EY) [+ | "] digit+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted using
radix 10. For example077e010 ' is legal, and denotes the same number7a®10 . The allowed range of floating
point literals is implementation-dependent. Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase-likés actually an expression composed of the operator
and the literall.

2.4.6 Imaginary literals

Imaginary literals are described by the following lexical definitions:
imagnumber ::= (floatnumber | intpart) (j" | "J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a pair of
floating point numbers and have the same restrictions on their range. To create a complex number with a nonzero real
part, add a floating point number to it, e.(8+4j) . Some examples of imaginary literals:

3.14j 10 10j 001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ - * *x / 1 %
<< >> & | - -
< > <= >= == 1= <>

The comparison operatoss> and!= are alternate spellings of the same operdtoris the preferred spellings> is
obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

10 Chapter 2. Lexical analysis

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special meaning
as an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically as delimiters,
but also perform an operation.

The following printingAscii characters have special meaning as part of other tokens or are otherwise significant to
the lexical analyzer:

The following printingAscii characters are not used in Python. Their occurrence outside string literals and comments
is an unconditional error:

@ $?

2.6. Delimiters 11

12

CHAPTER
THREE

Data model

3.1 Objects, values and types

Objectsare Python's abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer,” code is
also represented by objects.)

Every object has an identity, a type and a value. An objedésatity never changes once it has been created; you
may think of it as the object’s address in memory. Tise'‘operator compares the identity of two objects; i@

function returns an integer representing its identity (currently implemented as its address). An ojgedssalso
unchangeablé An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and
also defines the possible values for objects of that type.tyliie() function returns an object’s type (which is an
object itself). Thevalueof some objects can change. Objects whose value can change are saidutabke objects

whose value is unchangeable once they are created areicatedable (The value of an immutable container object

that contains a reference to a mutable object can change when the latter’'s value is changed; however the container is
still considered immutable, because the collection of objects it contains cannot be changed. So, immutability is not
strictly the same as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type;
for instance, numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An
implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation
quality how garbage collection is implemented, as long as no objects are collected that are still reachable. (Imple-
mentation note: the current implementation uses a reference-counting scheme with (optional) delayed detection of
cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to
collect garbage containing circular references. SeePtlibon Library Referenctor information on controlling the
collection of cyclic garbage.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally
be collectable. Also note that catching an exception wittnya *...except ' statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these
resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen,
such objects also provide an explicit way to release the external resource, ustlag@ method. Programs are

strongly recommended to explicitly close such objects. The . finally ' statement provides a convenient way

to do this.

Some objects contain references to other objects; these are catitdners Examples of containers are tuples, lists
and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a
container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability

1Since Python 2.2, a gradual merging of types and classes has been started that makes this and a few other assertions made in this manual
not 100% accurate and complete: for examplés itow possible in some cases to change an object’s type, under certain controlled conditions.
Until this manual undergoes extensive revision, it must now be taken as authoritative only regarding “classic classes”, that are still the default, for
compatibility purposes, in Python 2.2 and 2.3.

13

of a container, only the identities of the immediately contained objects are implied. So, if an immutable container (like
a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object with
the same type and value, while for mutable objects this is not allowed. E.g.,after1; b = 1 ’, a andb may

or may not refer to the same object with the value one, depending on the implementation, bat aft¢;‘d =

[1 ', c andd are guaranteed to refer to two different, unique, newly created empty lists. (Note tkatd = [] ’

assigns the same object to batlandd.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special attributes.” These are attributes that provide
access to the implementation and are not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the built-in
nameNone. It is used to signify the absence of a value in many situations, e.g., it is returned from functions
that don't explicitly return anything. Its truth value is false.

Notimplemented This type has a single value. There is a single object with this value. This object is accessed through
the built-in nameNotimplemented . Numeric methods and rich comparison methods may return this value
if they do not implement the operation for the operands provided. (The interpreter will then try the reflected
operation, or some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
built-in nameEllipsis . It is used to indicate the presence of the ‘' syntax in a slice. Its truth value is
true.

Numbers These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in
functions. Numeric objects are immutable; once created their value never changes. Python numbers are of
course strongly related to mathematical numbers, but subject to the limitations of numerical representation in
computers.

Python distinguishes between integers, floating point numbers, and complex numbers:

Integers These represent elements from the mathematical set of whole numbers.
There are three types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range may
be larger on machines with a larger natural word size, but not smaller.) When the result of an operation
would fall outside this range, the result is normally returned as a long integer (in some cases, the
exceptiorOverflowError is raised instead). For the purpose of shift and mask operations, integers
are assumed to have a binary, 2's complement notation using 32 or more bits, and hiding no bits from
the user (i.e., all 4294967296 different bit patterns correspond to different values).

Long integers These represent numbers in an unlimited range, subject to available (virtual) memory only.
For the purpose of shift and mask operations, a binary representation is assumed, and negative hum-
bers are represented in a variant of 2's complement which gives the illusion of an infinite string of
sign bits extending to the left.

Booleans These represent the truth values False and True. The two objects representing the values False
and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and Boolean
values behave like the values 0 and 1, respectively, in almost all contexts, the exception being that
when converted to a string, the strinf&lse” or"True" are returned, respectively.

14 Chapter 3. Data model

The rules for integer representation are intended to give the most meaningful interpretation of shift and
mask operations involving negative integers and the least surprises when switching between the plain and
long integer domains. Any operation except left shift, if it yields a result in the plain integer domain without
causing overflow, will yield the same result in the long integer domain or when using mixed operands.

Floating point numbers These represent machine-level double precision floating point numbers. You are at
the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range
and handling of overflow. Python does not support single-precision floating point numbers; the savings
in processor and memory usage that are usually the reason for using these is dwarfed by the overhead of
using objects in Python, so there is no reason to complicate the language with two kinds of floating point
numbers.

Complex numbers These represent complex numbers as a pair of machine-level double precision floating point
numbers. The same caveats apply as for floating point numbers. The real and imaginary parts of a complex
numberz can be retrieved through the read-only attribitesal andz.imag .

SequencesThese represent finite ordered sets indexed by non-negative numbers. The built-in fiemg}ionreturns
the number of items of a sequence. When the length of a sequemabésindex set contains the numbers 0, 1,
...,n-1. Itemi of sequenceai is selected by i] .

Sequences also support slicing:i: j] selects all items with indek such that <= k < j. When used as an
expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts

at 0.
Some sequences also support “extended slicing” with a third “step” pararagtei: k] selects all items o4
with indexxwherex = i + n*k,n>=0 andi <= x<].

Sequences are distinguished according to their mutability:

Immutable sequencesAn object of an immutable sequence type cannot change once it is created. (If the object
contains references to other objects, these other objects may be mutable and may be changed; however,
the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a character is represented
by a string of one item. Characters represent (at least) 8-bit bytes. The built-in fundhighs and
ord() convert between characters and nonnegative integers representing the byte values. Bytes with
the values 0-127 usually represent the correspondg@! values, but the interpretation of values is
up to the program. The string data type is also used to represent arrays of bytes, e.g., to hold data read
from a file.

(On systems whose native character set isagatil, strings may use EBCDIC in their internal rep-
resentation, provided the functioebr() andord() implem