Macintosh Library Modules
Release 2.3.3

Guido van Rossum
Fred L. Drake, Jr., editor

December 19, 2003

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This library reference manual documents Python’s extensions for the Macintosh. It should be used in conjunction with
thePython Library Referengavhich documents the standard library and built-in types.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatémains the highest authority on syntactic and semantic questions.

Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Using Python on a Mac OS 9 Macintosh 1
1.1 Getting and Installing MacPython-OSX. e 1
1.2 Getting and Installing MacPython-OS9. e 2
1.3 ThelIDE 5

2 MacPython Modules 7
2.1 mac— Implementationsforthes module. 7
2.2 macpath — MacOS path manipulationfunctions 7
2.3 macfs — Various file systemservices 7
24 ic —AccesstolnternetConfig 10
2.5 MacOS— Access to Mac OS interpreterfeatures oL 11
2.6 macostools — Convenience routines for file manipulation. 13
2.7 findertools — Thefinder's Apple Eventsinterface. 14
2.8 EasyDialogs — Basic Macintoshdialogs. 14
2.9 FrameWork — Interactive application framework oL 16
2.10 autoGIL — Global Interpreter Lock handling ineventloops. 20

3 MacPython OSA Modules 21
3.1 gensuitemodule — Generate OSAstub packages. 22
3.2 aetools —OSAclientsupport. 23
3.3 aepack — Conversion between Python variables and AppleEvent data containers. 24
3.4 aetypes — AppleEventobjects. e 25
3.5 MiniAEFrame — Open Scripting Architecture serversupport. 26

4 MacOS Toolbox Modules 29
4.1 Carbon.AE —Apple Events. e e 30
4.2 Carbon.AH —AppleHelp. 30
4.3 Carbon.App — Appearance Manager. i e e e 30
4.4 Carbon.CF —CoreFoundation e 30
45 Carbon.CG —Core GraphiCs. 0 i e e e 31
4.6 Carbon.CarbonEvt —CarbonEventManager. 31
4.7 Carbon.Cm — ComponentManager. o v v v i i 31
4.8 Carbon.Ctl —ControlManager. e 31
4.9 Carbon.Dlg —DialogManager 31
4,10 Carbon.Evt —EventManager. e e e e e 31
411 Carbon.Fm —FontManager. i i e e e 31
4,12 Carbon.Folder —FolderManager. i i e 31
4.13 Carbon.Help —HelpManager e 31

4.14 Carbon.List —ListManager. e 31

4.15 Carbon.Menu
4.16 Carbon.Mlte

— MenuManager. e e e
— MultiLingual TextEditor. e

4.17 Carbon.Qd — QuickDraw. e
4,18 Carbon.Qdoffs — QuickDraw Offscreen.
4,19 Carbon.Qt — QuIckTime e e e e e

4.20 Carbon.Res
4.21 Carbon.Scrap
4,22 Carbon.Snd

— Resource ManagerandHandles.
—ScrapManager. e e
—Sound Manager

4.23 Carbon.TE —TextEdit e e e

4.24 Carbon.Win
4.25 ColorPicker

—Window Manager e e e e
— Colorselectiondialog e

Undocumented Modules

5.1 applesingle
5.2 buildtools
5.3 py_resource

— AppleSingledecoder.
— Helper module for BuildAppletand Friends.
— Resources from Pythoncode.,

5.4 cfmfile — Code FragmentResourcemodule
5.5 icopen — Internet Config replacementfopen()
56 macerrors —MacOSEIMOrs.

5.7 macresource

— LOCate SCHPLIESOUICES . . . v v v v v e e e e e e e e e e

5.8 Nav—NavServicescalls. e e e

5.9 mkcwproject
5.10 nsremote —

— Create CodeWarrior projects. o i i
Wrapper around Netscape OSAmodules

5.11 PixMapWrapper — Wrapper for PixMap objects.

5.12 preferences
5.13 pythonprefs
5.14 quietconsole
5.15 videoreader

— Application preferencesmanager oo
— Preferences manager forPythan.

— Non-visible standard output.,
— Read QuickTimemovies e

5.16 W— Widgets built onFrameWork
5.17 waste — non-AppleTextEdit replacement. 0 0o

History and License

A.l Historyofthesoftware e
A.2 Terms and conditions for accessing or otherwise using Python

Module Index

Index

CHAPTER
ONE

Using Python on a Mac OS 9 Macintosh

Using Python on a Macintosh, especially on Mac OS 9 (MacPython-OSX includes a compietePython) can

seem like something completely different than using it onnaxJlike or Windows system. Most of the Python
documentation, both the “official” documentation and published books, describe only how Python is used on these
systems, causing confusion for the new user of MacPython-OS9. This chapter gives a brief introduction to the specifics
of using Python on a Macintosh.

The section on the IDE (see Section 1.3) is relevant to MacPython-OSX too.

1.1 Getting and Installing MacPython-OSX

As of Python 2.3a2 the only sure way of getting MacPython-OSX on your machine is getting a source distribution and
building what is called a "framework Python”. The details are in the filac/OSX/README’.

As binary installers become available the details will be postéutio/www.cwi.nl/“jack/macpython.html.
What you get after installing is a number of things:
e A ‘MacPython-2.3’ folder in your ‘Applications’ folder. In here you find the PythonIDE Integrated Development

Environment; PythonLauncher, which handles double-clicking Python scripts from the Finder; and the Package
Manager.

e A fairly standard Wix commandline Python interpreter irusr/local/bin/python’, but without the usual
*Jusr/local/lib/python’.

e A framework YLibrary/Frameworks/Python.framework’, where all the action really is, but which you usually do
not have to be aware of.

To uninstall MacPython you can simply remove these three things.

PythonIDE contains an Apple Help Viewer book called "MacPython Help” which you can access through its help
menu. If you are completely new to Python you should start reading the IDE introduction in that document.

If you are familiar with Python on other lUx platforms you should read the section on running Python scripts from
the UNIX shell.

1.1.1 How to run a Python script
Your best way to get started with Python on Mac OS X is through the PythonIDE integrated development environment,
see section 1.3 and use the Help menu when the IDE is running.

If you want to run Python scripts from the Terminal window command line or from the Finder you first need an
editor to create your script. Mac OS X comes with a number of standank dommand line editorsyi and

emacsamong them. If you want a more Mac-like ediBBEdit or TextWrangler from Bare Bones Software (see
http://www.barebones.com/products/bbedit/index.shtml) are good choices. Their freewd8Edit Lite is officially dis-
continued but still availableAppleWorks or any other word processor that can save files in ASCII is also a possibility,
but TextEdit is not: it saves in.ttf’ format only.

To run your script from the Terminal window you must make sure that/local/bin’ is in your shell search path
before fusr/bin’, where the Apple-supplied Python lives (which is version 2.2, as of Mac OS X 10.2.4).

To run your script from the Finder you have two options:

e Drag it toPythonLauncher

e SelectPythonLauncher as the default application to open your script (or any .py script) through the finder Info
window and double-click it.

PythonLauncher has various preferences to control how your script is launched. Option-dragging allows you to change
these for one invocation, or use its Preferences menu to change things globally.

1.1.2 Running scripts with a GUI

There is one Mac OS X quirk that you need to be aware of: programs that talk to the Aqua window manager (in other
words, anything that has a GUI) need to be run in a special waypytbenw instead ofpython to start such scripts.

1.1.3 configuration

MacPython honours all standardix environment variables such as PYTHONPATH, but setting these variables for
programs started from the Finder is non-standard as the Finder does not reagrpdile’ Or ‘ .cshrc’ at startup. You
need to create a filé/!MacOSX/environment.plist’. See Apple’s Technical Document QA1067 for details.

Installing additional Python packages is most easily done through the Package Manager, see the MacPython Help
Book for details.

1.2 Getting and Installing MacPython-OS9

The most recent release version as well as possible newer experimental versions are best found at the MacPython page
maintained by Jack Jansehtitp://homepages.cwi.nl/“jack/macpython.html.

Please refer to the(README' included with your distribution for the most up-to-date instructions.

Note that MacPython-OS9 runs fine on Mac OS X, and it runs in native mode, not in the Classic environment. Unless
you have specific requirements for a CFM-based Python there is no reason not to use MacPython-OSX, though.

1.2.1 Entering the interactive Interpreter

The interactive interpreter that you will see used in Python documentation is started by double-clickythitme
Interpreter icon, which looks like a 16-ton weight falling. You should see the version information and-t¥e *
prompt. Use it exactly as described in the standard documentation.

1.2.2 How to run a Python script

There are several ways to run an existing Python script; two common ways to run a Python script are “drag and
drop” and “double clicking”. Other ways include running it from within the IDE (see Section 1.3), or launching via
AppleScript.

2 Chapter 1. Using Python on a Mac OS 9 Macintosh

Drag and drop

One of the easiest ways to launch a Python script is via “Drag and Drop”. This is just like launching a text file in
the Finder by “dragging” it over your word processor’s icon and “dropping” it there. Make sure that you use an icon
referring to thePythoninterpreter, not thelDE or Idle icons which have different behaviour which is described
below.

Some things that might have gone wrong:

e A window flashes after dropping the script onto fgthoninterpreter, but then disappears. Most likely this
is a configuration issue; yolythoninterpreter is setup to exit immediately upon completion, but your script
assumes that if it prints something that text will stick around for a while. To fix this, see section 1.2.5.

e When you waved the script icon over tRgthoninterpreter, thePythoninterpreter icon did not hilight. Most
likely the Creator code and document type is unset (or set incorrectly) — this often happens when a file originates
on a non-Mac computer. See section 1.2.2 for more detalils.

Set Creator and Double Click

If the script that you want to launch has the appropriate Creator Code and File Type you can simply double-click on
the script to launch it. To be “double-clickable” a file needs to be of tyjieXT, with a creator code ofPyth .

Setting the creator code and filetype can be done with the IDE (see sections 1.3.2 and 1.3.4), with an editor with a
Python modeBBEdit) — see section 1.2.4, or with assorted other Mac utilities, but a schiifitdtypes.py’) has been
included in the MacPython distribution, making it possible to set the proper Type and Creator Codes with Python.

The fixfiletypes.py’ script will change the file type and creator codes for the indicated directory. Tdixfdetypes.py':

Locate it in the $cripts’ folder of the ‘Mac’ folder of the MacPython distribution.
Put all of the scripts that you want to fix in a folder with nothing else in it.

Double-click on thefixfiletypes.py’ icon.

P 0 poE

Navigate into the folder of files you want to fix, and press the “Select current folder” button.

1.2.3 Simulating command line arguments

There are two ways to simulate command-line arguments with MacPython-OS9.

1. via Interpreter options

¢ Hold the option-key down when launching your script. This will bring up a dialog box of Python Interpreter
options.

Click “Set UNix-style command line..” button.

Type the arguments into the “Argument” field.
e Click “OK”
e Click “Run”.

2. viadrag and drop If you save the script as an applet (see Section 1.3.4), you can also simulate some command-
line arguments via “Drag-and-Drop”. In this case, the names of the files that were dropped onto the applet will
be appended teys.argv , so that it will appear to the script as though they had been typed on a command
line. As on INIX systems, the firstitem isys.srgv is the path to the applet, and the rest are the files dropped
on the applet.

1.2. Getting and Installing MacPython-OS9 3

1.2.4 Creating a Python script

Since Python scripts are simply text files, they can be created in any way that text files can be created, but some special
tools also exist with extra features.

In an editor

You can create a text file with any word processing program susiS&ord or AppleWorks but you need to make
sure that the file is saved asSci” or “plain text”.

Editors with Python modes
Several text editors have additional features that add functionality when you are creating a Python script. These can

include coloring Python keywords to make your code easier to read, module browsing, or a built-in debugger. These
includeAlpha, Pepper, andBBedit, and the MacPython IDE (Section 1.3).

BBedit

If you useBBEdit to create your scripts you will want to tell it about the Python creator code so that you can simply
double click on the saved file to launch it.

e LaunchBBEdit.

Select “Preferences” from the “Edit” menu.

Select “File Types” from the scrolling list.

click on the “Add...” button and navigate foythoninterpreter in the main directory of the MacPython distri-
bution; click “open”.

Click on the “Save” button in the Preferences panel.

1.2.5 Configuration

The MacPython distribution comes witditPythonPrefs, an applet which will help you to customize the MacPython
environment for your working habits.

EditPythonPrefs

EditPythonPrefs gives you the capability to configure Python to behave the way you want it to. There are two ways
to useEditPythonPrefs, you can use it to set the preferences in general, or you can drop a particular Python engine
onto it to customize only that version. The latter can be handy if, for example, you want to have a second copy of the
Pythoninterpreter that keeps the output window open on a normal exit even though you prefer to normally not work
that way.

To change the default preferences, simply double-clickEditPythonPrefs. To change the preferences only for one
copy of the Interpreter, drop the icon for that copy oEttitPythonPrefs. You can also us&ditPythonPrefs in this
fashion to set the preferences of #gthon IDE and any applets you create — see section 1.3.4.

4 Chapter 1. Using Python on a Mac OS 9 Macintosh

Adding modules to the Module Search Path

When executing aimport statement, Python looks for modules in places defined bygyeegpath To edit the
sys.path on a Mac, launclieditPythonPrefs, and enter them into the largish field at the top (one per line).

Since MacPython defines a main Python directory, the easiest thing is to add folders to search within the main Python
directory. To add a folder of scripts that you created called “My Folder” located in the main Python Folder, enter
‘$(PYTHON):My Folder ’onto a new line.

To add the Desktop under OS 9 or below, a8thrtupDriveName:Desktop Folder "on a new line.

Default startup options

The “Default startup options...” button in theditPythonPrefs dialog box gives you many options including the
ability to keep the “Output” window open after the script terminates, and the ability to enter interactive mode after the
termination of the run script. The latter can be very helpful if you want to examine the objects that were created during
your script.

1.3 The IDE

The Python IDE (Integrated Development Environment) is a separate application that acts as a text editor for your
Python code, a class browser, a graphical debugger, and more.

1.3.1 Using the “Python Interactive” window

Use this window like you would th@ythonlInterpreter, except that you cannot use the “Drag and drop” method
above. Instead, dropping a script onto Bhghon IDE icon will open the file in a separate script window (which you
can then execute manually — see section 1.3.3).

1.3.2 Writing a Python Script

In addition to using th@ython IDE interactively, you can also type out a complete Python program, saving it incre-
mentally, and execute it or smaller selections of it.

You can create a new script, open a previously saved script, and save your currently open script by selecting the
appropriate item in the “File” menu. Dropping a Python script ontoRighon IDE will open it for editting.

If you try to open a script with th@ython IDE but either can’t locate it from the “Open” dialog box, or you get an
error message like “Can’t open file of type ...” see section 1.2.2.

When thePython IDE saves a script, it uses the creator code settings which are available by clicking on the small
black triangle on the top right of the document window, and selecting “save options”. The default is to save the file
with the Python IDE as the creator, this means that you can open the file for editing by simply double-clicking on its
icon. You might want to change this behaviour so that it will be opened byitieoninterpreter, and run. To do

this simply choose “Python Interpreter” from the “save options”. Note that these options are associated fi¥éh the
not the application.

1.3.3 Executing a script from within the IDE

You can run the script in the frontmost window of tRgthon IDE by hitting the run all button. You should be
aware, however that if you use the Python conventibn ‘'__name__ == " __main __": ' the script will notbe
“__main__" by default. To get that behaviour you must select the “Run asain__" option from the small black

1.3. The IDE 5

triangle on the top right of the document window. Note that this option is associated wiilethet the application.
It will stay active after a save, however; to shut this feature off simply select it again.

1.3.4 “Save as” versus “Save as Applet”

When you are done writing your Python script you have the option of saving it as an “applet” (by selecting “Save as
applet” from the “File” menu). This has a significant advantage in that you can drop files or folders onto it, to pass
them to the applet the way command-line users would type them onto the command-line to pass them as arguments
to the script. However, you should make sure to save the applet as a separate file, do not overwrite the script you are
writing, because you will not be able to edit it again.

Accessing the items passed to the applet via “drag-and-drop” is done using the ssdargy =~ mechanism. See
the general documentation for more

Note that saving a script as an applet will not make it runnable on a system without a Python installation.

6 Chapter 1. Using Python on a Mac OS 9 Macintosh

CHAPTER
TWO

MacPython Modules

The following modules are only available on the Macintosh, and are documented here:

mac Implementations for thes module.

macpath MacOS path manipulation functions.

macfs Support for FSSpec, the Alias Managinder aliases, and the Standard File package.
ic Access to Internet Config.

MacOS Access to Mac OS-specific interpreter features.

macostools Convenience routines for file manipulation.

findertools Wrappers around thiinder’s Apple Events interface.

EasyDialogs Basic Macintosh dialogs.

FrameWork Interactive application framework.

autoGIL Global Interpreter Lock handling in event loops.

2.1 mac— Implementations for the os module

This module implements the Mac OS 9 operating system dependent functionality provided by the standard module
0s. Itis best accessed through th& module. This module is only available in MacPython-OS9, on MacPython-OSX
posix is used.

The following functions are available in this modulehdir() , close() , dup() , fdopen() , getcwd() ,
Iseek() , listdir() , mkdir() ,open() ,read() ,rename() ,rmdir() ,stat() ,sync() ,unlink()
write() , as well as the exceptiogrror . Note that the times returned Isyat() are floating-point values, like
all time values in MacPython-OS9.

2.2 macpath — MacOS path manipulation functions

This module is the Macintosh implementation of heepath module. It is most portably accessedaasspath
Refer to thePython Library Referencior documentation obs.path

The following functions are available in this modulenormcase() , normpath() , isabs() , join()
split() Jisdir() , isfile() ,walk() ,exists() . For other functions available ws.path dummy coun-
terparts are available.

2.3 macfs — Various file system services

Deprecated since release 2.3'he macfs module should be considered obsolete FBE&pec, FSRef andAlias
handling use the Carbon.File or Carbon.Folder module. For file dialogs usadly®ialogs module.

This module provides access to Macintosh FSSpec handling, the Alias Mafiager,aliases and the Standard File
package.

Whenever a function or method expectilaargument, this argument can be one of three things: (1) a full or partial
Macintosh pathname, (2) dSSpec object or (3) a 3-tuplé wdRefNum parlD, namé as described ifnside
Macintosh: Files An FSSpec can point to a non-existing file, as long as the folder containing the file exists. Under
MacPython the same is true for a pathname, but not under unix-Pyton because of the way pathnames and FSRefs
works. See Apple’'s documentation for details.

A description of aliases and the Standard File package can also be found there.

FSSpec(file)
Create ar-SSpec object for the specified file.

RawFSSped datd)
Create arFSSpec object given the raw data for the C structure for #@Spec as a string. This is mainly
useful if you have obtained dfSSpec structure over a network.

RawAlias (data)
Create arAlias object given the raw data for the C structure for the alias as a string. This is mainly useful if
you have obtained aRSSpec structure over a network.

Finfo ()
Create a zero-filleéFInfo object.

ResolveAliasFile (file)
Resolve an alias file. Returns a 3-tulesspec¢ isfolder, aliased wherefsspedis the resulting=SSpec
object,isfolder is true if fsspecpoints to a folder andliasedis true if the file was an alias in the first place
(otherwise thd=SSpec object for the file itself is returned).

StandardGetFile ([type,])
Present the user with a standard “open input file” dialog. Optionally, you can pass up to four 4-character file
types to limit the files the user can choose from. The function returfsS&pec object and a flag indicating
that the user completed the dialog without cancelling.

PromptGetFile (promp{, type,])
Similar to StandardGetFile() but allows you to specify a prompt which will be displayed at the top of the
dialog.

StandardPutFile (promp{, default])
Present the user with a standard “open output file” diapygmptis the prompt string, and the optiordéfault
argument initializes the output file name. The function returnE&8pec object and a flag indicating that the
user completed the dialog without cancelling.

GetDirectory ([prompt])
Present the user with a non-standard “select a directory” dialog. You have to first open the directory before
clicking on the “select current directory” buttopromptis the prompt string which will be displayed at the top
of the dialog. Return aRSSpec object and a success-indicator.

SetFolder ([fssped)
Set the folder that is initially presented to the user when one of the file selection dialogs is pre$esped.
should point to a file in the folder, not the folder itself (the file need not exist, though). If no argument is passed
the folder will be set to the current directory, i.e. wioatgetcwd() returns.

Note that starting with system 7.5 the user can change Standard File behaviour with the “general controls”
control panel, thereby making this call inoperative.

FindFolder (where, which, creaje
Locates one of the “special” folders that MacOS knows about, such as the trash or the Preferencegteider.
is the disk to searchyhichis the 4-character string specifying which folder to locate. Settnegtecauses the
folder to be created if it does not exist. Returnsvaefnum dirid) tuple.

8 Chapter 2. MacPython Modules

The constants favhereandwhichcan be obtained from the standard modd&bon.Folders

NewAliasMinimalFromFullPath (pathnamg
Return a minimahlias object that points to the given file, which must be specified as a full pathname. This
is the only way to create afllias pointing to a non-existing file.

FindApplication (creaton
Locate the application with 4-character creator comator. The function returns aRSSpec object pointing
to the application.

2.3.1 FSSpec Objects

data
The raw data from the FSSpec object, suitable for passing to other applications, for instance.

as _pathname ()
Return the full pathname of the file described by B&Spec object.

as _tuple ()
Return thgl wdRefNum parlD, namé§ tuple of the file described by tHeSSpec object.

NewAlias ([file])
Create an Alias object pointing to the file described by this FSSpec. If the opfileradrameter is present the
alias will be relative to that file, otherwise it will be absolute.

NewAliasMinimal ()
Create a minimal alias pointing to this file.

GetCreatorType ()
Return the 4-character creator and type of the file.

SetCreatorType (creator, typé
Set the 4-character creator and type of the file.

GetFInfo ()
Return aFInfo object describing the finder info for the file.

SetFInfo (finfo)
Set the finder info for the file to the values givenfiado (anFInfo object).

GetDates ()
Return a tuple with three floating point values representing the creation date, modification date and backup date
of the file.

SetDates (crdate, moddate, backupdate
Set the creation, modification and backup date of the file. The values are in the standard floating point format
used for times throughout Python.

2.3.2 Alias Objects

data
The raw data for the Alias record, suitable for storing in a resource or transmitting to other programs.

Resolve ([file])
Resolve the alias. If the alias was created as a relative alias you should pass the file relative to which it is. Return
the FSSpec for the file pointed to and a flag indicating whetheflias object itself was modified during the
search process. If the file does not exist but the path leading up to it does exist a valid fsspec is returned.

Getinfo (num
An interface to the C routin€etAliasinfo()

2.3. macfs — Various file system services 9

Update (file[, file2])
Update the alias to point to thide given. Iffile2is present a relative alias will be created.

Note that it is currently not possible to directly manipulate a resource adiasm object. Hence, after calling
Update() or afterResolve() indicates that the alias has changed the Python program is responsible for getting
thedata value from theAlias object and modifying the resource.

2.3.3 FlInfo Objects

Seelnside Macintosh: Fileor a complete description of what the various fields mean.

Creator
The 4-character creator code of the file.

Type
The 4-character type code of the file.
Flags
The finder flags for the file as 16-bit integer. The bit valueBlagsare defined in standard modACFS

Location
A Point giving the position of the file’s icon in its folder.

Fidr
The folder the file is in (as an integer).

2.4 ic — Access to Internet Config

This module provides access to Macintosh Internet Config package, which stores preferences for Internet programs
such as mail address, default homepage, etc. Also, Internet Config contains an elaborate set of mappings from Mac-
intosh creator/type codes to foreign filename extensions plus information on how to transfer files (binary, ascii, etc.).
Since MacOS 9, this module is a control panel named Internet.

There is a low-level companion modutglue which provides the basic Internet Config access functionality. This
low-level module is not documented, but the docstrings of the routines document the parameters and the routine names
are the same as for the Pascal or C API to Internet Config, so the standard IC programmers’ documentation can be
used if this module is needed.

Theic module defines therror exception and symbolic names for all error codes Internet Config can produce; see
the source for details.

exceptionerror
Exception raised on errors in tiee module.

Theic module defines the following class and function:

classIC ([signature[, ic]])
Create an Internet Config object. The signature is a 4-character creator code of the current application
(default 'Pyth’) which may influence some of ICs settings. The optiolabrgument is a low-level
icglue.icinstance created beforehand, this may be useful if you want to get preferences from a different
config file, etc.

launchurl (url], hint
parseurl (datg, star ,enc{, hint]]])
mapfile (file)
maptypecreator (type, creato[, filenamd)
settypecreator (file)
These functions are “shortcuts” to the methods of the same name, described below.

10 Chapter 2. MacPython Modules

2.4.1 IC Objects

IC objects have a mapping interface, hence to obtain the mail address you simjyMeailAddress’] . As-
signment also works, and changes the option in the configuration file.

The module knows about various datatypes, and converts the internal IC representation to a “logical” Python data
structure. Running thie module standalone will run a test program that lists all keys and values in your IC database,
this will have to serve as documentation.

If the module does not know how to represent the data it returns an instancel6QbpaqueData type, with the
raw data in itgdata attribute. Objects of this type are also acceptable values for assignment.

Besides the dictionary interfack; objects have the following methods:

launchurl (url [hint])
Parse the given URL, lauch the correct application and pass it the URL. The oftiohzdn be a scheme name
such asmailto:’ , in which case incomplete URLs are completed with this schent@ntfis not provided,
incomplete URLSs are invalid.

parseurl (data[, starl{, enc{, hint]]])
Find an URL somewhere igataand return start position, end position and the URL. The optistaat andend

can be used to limit the search, so for instance if a user clicks in a long text field you can pass the whole text
field and the click-position irstart and this routine will return the whole URL in which the user clicked. As
above hintis an optional scheme used to complete incomplete URLSs.

mapfile (file)
Return the mapping entry for the givéite, which can be passed as either a filename anaofs.FSSpec()
result, and which need not exist.

The mapping entry is returned as a tuphkeersion typg creator, postcreator flags extension app-
name postappname mimetype entrynamg, whereversionis the entry version numbetype is the 4-
character filetypegreator is the 4-character creator typpostcreatoris the 4-character creator code of an
optional application to post-process the file after downloadlagsare various bits specifying whether to trans-
fer in binary or ascii and suclextensioris the filename extension for this file typ@ppnameis the printable
name of the application to which this file belongestappnamés the name of the postprocessing application,
mimetypas the MIME type of this file anéntrynames the name of this entry.

maptypecreator (type, creato[, filenamd)
Return the mapping entry for files with given 4-charatygeandcreatorcodes. The optiondllenamemay be
specified to further help finding the correct entry (if the creator cod#?i®?’ , for instance).

The mapping entry is returned in the same format asfapfile

settypecreator (file)
Given an existindile, specified either as a filename or asnaacfs.FSSpec() result, set its creator and type
correctly based on its extension. The finder is told about the change, so the finder icon will be updated quickly.

2.5 MacOS— Access to Mac OS interpreter features

This module provides access to MacOS specific functionality in the Python interpreter, such as how the interpreter
eventloop functions and the like. Use with care.

Note the capitalization of the module name; this is a historical artifact.

runtimemodel
Eithercarbon’ or’'macho’ . This signifies whether this Python uses the Mac OS X and Mac OS 9 compat-
ible CarbonLib style or the Mac OS X-only Mach-O style. In earlier versions of Python the value could also be
‘ppc’ for the classic Mac OS 8 runtime model.

linkmodel

2.5. MacOS— Access to Mac OS interpreter features 11

The way the interpreter has been linked. As extension modules may be incompatible between linking models,
packages could use this information to give more decent error messages. The value isstate'of for

a statically linked Pythoniframework’ for Python in a Mac OS X frameworkshared’ for Python in a
standard unix shared library atddm’ for the Mac OS 9-compatible Python.

exceptionError
This exception is raised on MacOS generated errors, either from functions in this module or from other mac-
specific modules like the toolbox interfaces. The arguments are the integer error co@SEhevalue) and
a textual description of the error code. Symbolic names for all known error codes are defined in the standard
modulemacerrors

SetEventHandler (handley)
In the inner interpreter loop Python will occasionally check for events, unless disabled with
ScheduleParams() . With this function you can pass a Python event-handler function that will be called
if an event is available. The event is passed as parameter and the function should return non-zero if the event
has been fully processed, otherwise event processing continues (by passing the event to the console window
package, for instance).

Call SetEventHandler() without a parameter to clear the event handler. Setting an event handler while
one is already set is an error.

Availability: MacPython-OS9.

SchedParams ([doint[, evtmask, besocia[, interval[, bgyield]]]]])
Influence the interpreter inner loop event handligerval specifies how often (in seconds, floating point) the
interpreter should enter the event processing code. Whendirg,causes interrupt (command-dot) checking
to be done.evtmaskells the interpreter to do event processing for events in the mask (redraws, mouseclicks
to switch to other applications, etc). Thesocialflag gives other processes a chance to run. They are granted
minimal runtime when Python is in the foreground dglield seconds peinterval when Python runs in the
background.
All parameters are optional, and default to the current value. The return value of this function is a tuple with

the old values of these options. Initial defaults are that all processing is enabled, checking is done every quarter
second and the processor is given up for a quarter second when in the background.

The most common use case is to catthedParams(0, 0) to completely disable event handling in the
interpreter mainloop.

Availability: MacPython-OS9.

HandleEvent (eV)
Pass the event recoesback to the Python event loop, or possibly to the handler fosylsestdout ~ window
(based on the compiler used to build Python). This allows Python programs that do their own event handling to
still have some command-period and window-switching capability.

If you attempt to call this function from an event handler set throBgtEventHandler() you will get an
exception.

Availability: MacPython-OS9.

GetErrorString (‘errno)
Return the textual description of MacOS error cedano.

splash (resid)
This function will put a splash window on-screen, with the contents of the DLOG resource specifiesidy
Calling with a zero argument will remove the splash screen. This function is useful if you want an applet to post
a splash screen early in initialization without first having to load numerous extension modules.

Availability: MacPython-OS9.
DebugStr (messag«{, object])

On Mac OS 9, drop to the low-level debugger with messagesageThe optionabbjectargument is not used,
but can easily be inspected from the debugger. On Mac OS X the string is simply printed to stderr.

12 Chapter 2. MacPython Modules

Note that you should use this function with extreme care: if no low-level debugger like MacsBug is installed
this call will crash your system. It is intended mainly for developers of Python extension modules.

SysBeep ()
Ring the bell.

GetTicks ()
Get the number of clock ticks (1/60th of a second) since system boot.

GetCreatorAndType (file)
Return the file creator and file type as two four-character strings.filehgarameter can be a pathname or an
FSSpec or FSRef object.

SetCreatorAndType (file, creator, typg
Set the file creator and file type. Thike parameter can be a pathname oF&Spec or FSRef object.creator
andtypemust be four character strings.

openrf (name[, modd)
Open the resource fork of a file. Arguments are the same as for the built-in furngien() . The object
returned has file-like semantics, but it is not a Python file object, so there may be subtle differences.

WNMAvailable ()
Checks whether the current process has access to the window manager. The method wiltaisirnf
the window manager is not available, for instance when running on Mac OS X Server or when logged in via
ssh, or when the current interpreter is not running from a fullblown application bundle. A script runs from
an application bundle either when it has been started gyithonw instead ofpython or when running as an
applet.

On Mac OS 9 the method always retuifrsie .

2.6 macostools — Convenience routines for file manipulation

This module contains some convenience routines for file-manipulation on the Macintosh. All file parameters can be
specified as pathnamdsSRef or FSSpec objects.

Themacostools module defines the following functions:

copy (src, ds[, createpatlﬁ, copytimei])
Copy filesrcto dst If createpathis non-zero the folders leading tistare created if necessary. The method
copies data and resource fork and some finder information (creator, type, flags) and optionally the creation,
modification and backup times (default is to copy them). Custom icons, comments and icon position are not
copied.

copytree (src, ds)

Recursively copy a file tree frorarc to dst, creating folders as neededrc and dst should be specified as
pathnames.

mkalias (src, ds)
Create a finder aliadst pointing tosrc.

touched (dsi
Tell the finder that some bits of finder-information such as creator or type fadileas changed. The file can
be specified by pathname or fsspec. This call should tell the finder to redraw the files icon.

BUFSIZ
The buffer size focopy , default 1 megabyte.

Note that the process of creating finder aliases is not specified in the Apple documentation. Hence, aliases created
with mkalias() could conceivably have incompatible behaviour in some cases.

2.6. macostools — Convenience routines for file manipulation 13

2.7 findertools — The finder’s Apple Events interface

This module contains routines that give Python programs access to some functionality provided by the finder. They
are implemented as wrappers around the AppleEvent interface to the finder.

All file and folder parameters can be specified either as full pathnamesF&Ref or FSSpec objects.
Thefindertools module defines the following functions:

launch (file)
Tell the finder to launctiile. What launching means depends on the file: applications are started, folders are
opened and documents are opened in the correct application.

Print (file)
Tell the finder to print a file. The behaviour is identical to selecting the file and using the print command in the
finder’s file menu.

copy (file, destdi)
Tell the finder to copy a file or folddile to folderdestdir The function returns aAlias object pointing to
the new file.

move(file, destdi)
Tell the finder to move a file or folddile to folderdestdir The function returns aAlias object pointing to
the new file.

sleep ()
Tell the finder to put the Macintosh to sleep, if your machine supports it.

restart ()
Tell the finder to perform an orderly restart of the machine.

shutdown ()
Tell the finder to perform an orderly shutdown of the machine.

2.8 EasyDialogs — Basic Macintosh dialogs

TheEasyDialogs module contains some simple dialogs for the Macintosh. All routines take an optional resource
ID parametelid with which one can override thBLOGresource used for the dialog, provided that the dialog items
correspond (both type and item number) to those in the daiultGresource. See source code for details.

TheEasyDialogs module defines the following functions:

Message (str[, id[, ok:None]])
Displays a modal dialog with the message txtwhich should be at most 255 characters long. The button text
defaults to “OK”, but is set to the string argumenktif the latter is supplied. Control is returned when the user
clicks the “OK” button.

AskString (promp{, defaul{, id[, ok[, canceﬂ]]])
Asks the user to input a string value via a modal diajmgmptis the prompt message, and the optiasheafiault
supplies the initial value for the string (otherwi8e is used). The text of the “OK” and “Cancel” buttons can be
changed with thek andcancelarguments. All strings can be at most 255 bytes lohgkString() returns
the string entered ddone in case the user cancelled.

AskPassword (promp{, defaul{, id[, ok[, canceﬂ]]])
Asks the user to input a string value via a modal dialog. 1Ak&String() , but with the text shown as bullets.
The arguments have the same meaning ag&String()

AskYesNoCancel (questi0|{, defaul{, yes[, no[, cance[, |d]]]]])
Presents a dialog with promptiestionand three buttons labelled “Yes”, “No”, and “Cancel”. Retufnfor

14 Chapter 2. MacPython Modules

“Yes”, 0 for “No” and -1 for “Cancel”. The value oflefault(or 0 if defaultis not supplied) is returned when
the RETURNey is pressed. The text of the buttons can be changed witpethao, andcancelarguments; to
prevent a button from appearing, supply for the corresponding argument.

ProgressBar ([title[, maxva[, Iabel[, |d]]]])
Displays a modeless progress-bar dialog. This is the constructor fBrtigegessBar class described below.
title is the text string displayed (default “Working...fhaxvalis the value at which progress is complete (default
0, indicating that an indeterminate amount of work remains to be done)ahatis the text that is displayed
above the progress bar itself.

GetArgv ([optionlis{ commandiigt, addoldfild, addnewfil§, addfoldef, id]]]]]])
Displays a dialog which aids the user in constructing a command-line argument list. Returns the list in
sys.argv format, suitable for passing as an argumemngétopt.getopt() . addoldfile addnewfile and
addfolderare boolean arguments. When nonzero, they enable the user to insert into the command line paths to an
existing file, a (possibly) not-yet-existent file, and a folder, respectively. (Note: Option arguments must appear
in the command line before file and folder arguments in order to be recognizgetdyyt.getopt() .) Ar-
guments containing spaces can be specified by enclosing them within single or double qByetemMExit
exception is raised if the user presses the “Cancel” button.
optionlistis a list that determines a popup menu from which the allowed options are selected. Its items can
take one of two formsoptstr or (optstr, desc) . When presentdescris a short descriptive string that is
displayed in the dialog while this option is selected in the popup menu. The correspondence lugtiseen
and command-line arguments is:

optstrformat \ Command-line format

X -X (short option)

X: Orx= -X (short option with value)
Xyz --xyz (long option)

Xyz: orxyz= | --xyz (long option with value)

commandlisis a list of items of the forntmdstror (cmdsty desc) , wheredescris as above. Themdsts
will appear in a popup menu. When chosen, the textroistrwill be appended to the command line as is,
except that a trailing:” or * =’ (if present) will be trimmed off.

New in version 2.0.

AskFileForOpen ([messag}a [typeList] |, defauItLocatioﬂ \ defauItOptionFIag§ \ Iocation] [client-
Name] | , windowTitle| |, actionButtonLab ’L cancelButtonLabg| | , preferenceKe [

popupExtensio{]w[, eventPro«] [previewProd | , filterProc [wanted])
Post a dialog asking the user for a file to open, and return the file sele eif the user cancellednessage

is a text message to displaypelListis a list of 4-char filetypes allowablelefaultLocationis the pathname,
FSSpec or FSRef of the folder to show initiallgcationis the(x, y) position on the screen where the dialog
is shown,actionButtonLabels a string to show instead of “Open” in the OK butta@ncelButtonLabeis a
string to show instead of “Cancel” in the cancel buttaantedis the type of value wanted as a retustring
unicode , FSSpec, FSRef and subtypes thereof are acceptable.

For a description of the other arguments please see the Apple Navigation Services documentation and the Easy-
Dialogs sourcecode.

AskFileForSave ([messag}a ,savedFiIeNam]z[, defaultLocation] |, defaultOptionFla [Iocation] [
clientNam ,windowTitIe] [actionButtonLabe] | , cancelButtonLabgl | , preferenceKey

, popupExtensiop| , fileTyp ,fiIeCreator] [eventProd [wanted|)
Post a dialog asking the user for a file to save to, and return the file selechaoheif the user cancelled.

savedFileNames the default for the file name to save to (the return value). See AskFileForOpen for a description
of the other arguments.

AskFolder (messag}[, defauItLocatior] [defaultO tionFIagi[, Iocation] [clientNamg | , windowTitle
, actionButtonLab [,canceIButtonLab I[, preferenceKe]/[, popupExtensio ,eventPrO(] :

fiIterProc] [wanted|)
Post a dialog asking the user to select a folder, and return the folder selettedaif the user cancelled. See

AskFileForOpen for a description of the arguments.

2.8. EasyDialogs — Basic Macintosh dialogs 15

2.8.1 ProgressBar Objects

ProgressBar objects provide support for modeless progress-bar dialogs. Both determinate (thermometer style) and
indeterminate (barber-pole style) progress bars are supported. The bar will be determinate if its maximum value is
greater than zero; otherwise it will be indeterminate. Changed in version 2.2: Support for indeterminate-style progress
bars was added.

The dialog is displayed immediately after creation. If the dialog’s “Cancel” button is pressed;mmdi. or ESCis
typed, the dialog window is hidden akayboardinterrupt is raised (but note that this response does not occur
until the progress bar is next updated, typically via a calhtf) orset()). Otherwise, the bar remains visible
until theProgressBar object is discarded.

ProgressBar objects possess the following attributes and methods:

curval
The current value (of type integer or long integer) of the progress bar. The normal access methods coerce
curval betweerD andmaxval . This attribute should not be altered directly.

maxval
The maximum value (of type integer or long integer) of the progress bar; the progress bar (thermometer style) is
fullwhencurval equalsmaxval . If maxval is0, the bar will be indeterminate (barber-pole). This attribute
should not be altered directly.

title ([newstr])
Sets the text in the title bar of the progress dialogawstt

label ([newstr])
Sets the text in the progress box of the progress dialogwestr

set (value{, max])
Sets the progress bar&urval to valug and alsomaxval to maxif the latter is provided.valueis first
coerced between 0 andaxval . The thermometer bar is updated to reflect the changes, including a change
from indeterminate to determinate or vice versa.

inc ([n])
Increments the progress batcsrval by n, or by 1 if nis not provided. (Note that may be negative, in which
case the effect is a decrement.) The progress bar is updated to reflect the change. If the bar is indeterminate, this
causes one “spin” of the barber pole. The resultngral is coerced between 0 antaxval if incrementing
causes it to fall outside this range.

2.9 FrameWork — Interactive application framework

TheFrameWork module contains classes that together provide a framework for an interactive Macintosh application.
The programmer builds an application by creating subclasses that override various methods of the bases classes,
thereby implementing the functionality wanted. Overriding functionality can often be done on various different levels,
i.e. to handle clicks in a single dialog window in a non-standard way it is not necessary to override the complete event
handling.

TheFrameWork is still very much work-in-progress, and the documentation describes only the most important func-
tionality, and not in the most logical manner at that. Examine the source or the examples for more details. The follow-
ing are some comments posted on the MacPython newsgroup about the strengths and limitetemedfork :

The strong point oFrameWork is that it allows you to break into the control-flow at many different
places.\W for instance, uses a different way to enable/disable menus and that plugs right in leaving the rest
intact. The weak points dframeWork are that it has no abstract command interface (but that shouldn’t
be difficult), that it's dialog support is minimal and that it's control/toolbar support is non-existent.

16 Chapter 2. MacPython Modules

TheFrameWork module defines the following functions:

Application ()
An object representing the complete application. See below for a description of the methods. The default
__init __() routine creates an empty window dictionary and a menu bar with an apple menu.

MenuBar ()
An object representing the menubar. This object is usually not created by the user.

Menu(bar, title[, after])
An object representing a menu. Upon creation you pasM#éraiBar the menu appears in, thide string and
a position (1-basedjfter where the menu should appear (default: at the end).

Menultem (menu, title[, shortcut, caIIbacﬂ)
Create a menu item object. The arguments are the menu to create, the item title string and optionally the
keyboard shortcut and a callback routine. The callback is called with the arguments menu-id, item number
within menu (1-based), current front window and the event record.

Instead of a callable object the callback can also be a string. In this case menu selection causes the lookup of a
method in the topmost window and the application. The method name is the callback strindomgnu _’
prepended.

Calling theMenuBar fixmenudimstate() method sets the correct dimming for all menu items based on
the current front window.

Separator (meny
Add a separator to the end of a menu.

SubMenu(menu, labél
Create a submenu namkzdbel under menunenu The menu object is returned.

Window(paren
Creates a (modeless) windoRarentis the application object to which the window belongs. The window is not
displayed until later.

DialogWindow (paren
Creates a modeless dialog window.

windowbounds (width, heigh}
Return &(left, top, right, botton) tuple suitable for creation of a window of given width and height. The
window will be staggered with respect to previous windows, and an attempt is made to keep the whole window
on-screen. However, the window will however always be the exact size given, so parts may be offscreen.

setwatchcursor ()
Set the mouse cursor to a watch.

setarrowcursor ()
Set the mouse cursor to an arrow.

2.9.1 Application Objects

Application objects have the following methods, among others:

makeusermenus ()
Override this method if you need menus in your application. Append the menus to the attréduibar .

getabouttext ()
Override this method to return a text string describing your application. Alternatively, override the
do_about() method for more elaborate “about” messages.

mainloop ([masl{, wait]])
This routine is the main event loop, call it to set your application rolliMgskis the mask of events you want

2.9. FrameWork — Interactive application framework 17

to handle wait is the number of ticks you want to leave to other concurrent application (default 0, which is
probably not a good idea). While raisisglf to exit the mainloop is still supported it is not recommended: call
self. _quit() instead.

The event loop is split into many small parts, each of which can be overridden. The default methods take
care of dispatching events to windows and dialogs, handling drags and resizes, Apple Events, events for non-
FrameWork windows, etc.

In general, all event handlers should retdriif the event is fully handled an@l otherwise (because the front
window was not a FrameWork window, for instance). This is needed so that update events and such can be
passed on to other windows like the Sioux console window. CaMagOS.HandleEvent() is not allowed

within our_dispatchor its callees, since this may result in an infinite loop if the code is called through the
Python inner-loop event handler.

asyncevents (onoff)
Call this method with a nonzero parameter to enable asynchronous event handling. This will tell the inner
interpreter loop to call the application event handlsync dispatchwhenever events are available. This will
cause FrameWork window updates and the user interface to remain working during long computations, but will
slow the interpreter down and may cause surprising results in non-reentrant code (such as FrameWork itself).
By defaultasync_dispatchwill immedeately callbur_dispatchbut you may override this to handle only certain
events asynchronously. Events you do not handle will be passed to Sioux and such.

The old on/off value is returned.

_quit ()
Terminate the runningrainloop() call at the next convenient moment.

do_char (c, eveny
The user typed character The complete details of the event can be found inethentstructure. This method
can also be provided inWindow object, which overrides the application-wide handler if the window is front-
most.

do_dialogevent (evenj
Called early in the event loop to handle modeless dialog events. The default method simply dispatches the event
to the relevant dialog (not through tBéalogWindow object involved). Override if you need special handling
of dialog events (keyboard shortcuts, etc).

idle (evenj
Called by the main event loop when no events are available. The null-event is passed (so you can look at mouse
position, etc).

2.9.2 Window Objects

Window objects have the following methods, among others:

open ()
Override this method to open a window. Store the MacOS window-icsetf.wid and call the
do_postopen() method to register the window with the parent application.

close ()
Override this method to do any special processing on window close. Calbthpostclose() method to
cleanup the parent state.

do_postresize (' width, height, macoswindowjid
Called after the window is resized. Override if more needs to be done than dalialiRect

do _contentclick (local, modifiers, event
The user clicked in the content part of a window. The arguments are the coordinates (window-relative), the key
modifiers and the raw event.

18 Chapter 2. MacPython Modules

do _update (macoswindowid, event
An update event for the window was received. Redraw the window.

do_activate (activate, event
The window was activatedativate == 1) or deactivateddctivate == 0). Handle things like focus high-
lighting, etc.

2.9.3 ControlsWindow Object

ControlsWindow objects have the following methods besides thogérmdow objects:

do _controlhit (window, control, pcode, event
Partpcodeof controlcontrolwas hit by the user. Tracking and such has already been taken care of.

2.9.4 ScrolledWindow Object

ScrolledWindow objects are ControlsWindow objects with the following extra methods:

scrollbars [wanb{, wanty]])
Create (or destroy) horizontal and vertical scrollbars. The arguments specify which you want (default: both).
The scrollbars always have minimudrand maximunB82767 .

getscrollbarvalues 0
You must supply this method. It should return a tupbe y) giving the current position of the scrollbars
(between0 and32767). You can returrNone for either to indicate the whole document is visible in that

direction.

updatescrollbars 0
Call this method when the document has changed. It will gatscrollbarvalues() and update the
scrollbars.

scrollbar _callback (‘which, what, valug
Supplied by you and called after user interactiwhichwill be 'x’ or’y’ ,whatwillbe’- ,’--" ’set’
++' or'+’ . For'set’ ,valuewill contain the new scrollbar position.

scalebarvalues (.absmin, absmax, curmin, curmax
Auxiliary method to help you calculate values to return frgetscrollbarvalues() . You pass document
minimum and maximum value and topmost (leftmost) and bottommaost (rightmost) visible values and it returns
the correct number dxone.

do_activate (onoff, evenjt
Takes care of dimming/highlighting scrollbars when a window becomes frontmost. If you override this method,
call this one at the end of your method.

do_postresize (width, height, windoy
Moves scrollbars to the correct position. Call this method initially if you override it.

do _controlhit (window, control, pcode, event
Handles scrollbar interaction. If you override it call this method first, a honzero return value indicates the hit
was in the scrollbars and has been handled.

2.9.5 DialogWindow Objects

DialogWindow objects have the following methods besides tho$®inflow objects:

open (resid)
Create the dialog window, from the DLOG resource withddid The dialog object is stored gelf.wid

2.9. FrameWork — Interactive application framework 19

do_itemhit (item, event
Item numbeitemwas hit. You are responsible for redrawing toggle buttons, etc.

2.10 autoGIL — Global Interpreter Lock handling in event loops

TheautoGIL module provides a functioinstallAutoGIL that automatically locks and unlocks Python’s Global
Interpreter Lock when running an event loop.

exceptionAutoGILError
Raised if the observer callback cannot be installed, for example because the current thread does not have a run
loop.

installAutoGIL 0
Install an observer callback in the event loop (CFRunLoop) for the current thread, that will lock and unlock the
Global Interpreter Lock (GIL) at appropriate times, allowing other Python threads to run while the event loop is
idle.

Availability: OSX 10.1 or later.

20 Chapter 2. MacPython Modules

CHAPTER
THREE

MacPython OSA Modules

Python has a fairly complete implementation of the Open Scripting Architecure (OSA, also commonly referred to as
AppleScript), allowing you to control scriptable applications from your Python program, and with a fairly pythonic
interface.

For a description of the various components of AppleScript and OSA, and to get an understanding of the architecture
and terminology, you should read Apple’s documentation. The "Applescript Language Guide” explains the conceptual
model and the terminology, and documents the standard suite. The "Open Scripting Architecture” document explains
how to use OSA from an application programmers point of view. In the Apple Help Viewer these book sare located in
the Developer Documentation, Core Technologies section.

As an example of scripting an application, the following piece of AppleScript will get the name of the frontmost
Finder window and print it;

tell application "Finder"
get name of window 1
end tell

In Python, the following code fragment will do the same:

import Finder

f = Finder.Finder()
print f.get(f.window(1).name)

As distributed the Python library includes packages that implement the standard suites, plus packages that interface to
a small number of common applications.

To send AppleEvents to an application you must first create the Python package interfacing to the terminology of the
application (whaScript Editor calls the "Dictionary”). This can be done from within tRgthonIDE or by running
the ‘gensuitemodule.py’ module as a standalone program from the command line.

The generated output is a package with a number of modules, one for every suite used in the program plus an
__init __ module to glue it all together. The Python inheritance graph follows the AppleScript inheritance graph,
so if a programs dictionary specifies that it includes support for the Standard Suite, but extends one or two verbs with
extra arguments then the output suite will contain a mo&@tdandard _Suite that imports and re-exports every-

thing from StdSuites.Standard _Suite but overrides the methods that have extra functionality. The output of
gensuitemodule is pretty readable, and contains the documentation that was in the original AppleScript dictionary
in Python docstrings, so reading it is a good source of documentation.

The output package implements a main class with the same name as the package which contains all the AppleScript

21

verbs as methods, with the direct object as the first argument and all optional parameters as keyword arguments.
AppleScript classes are also implemented as Python classes, as are comparisons and all the other thingies.

The main Python class implementing the verbs also allows access to the properties and elements declared in the Ap-
pleScript class "application”. In the current release that is as far as the object orientation goes, so in the example above
we need to uséget(f.window(1).name) instead of the more Pythonfavindow(1).name.get()

If an AppleScript identifier is not a Python identifier the name is mangled according to a small number of rules:

e spaces are replaced with underscores
e other non-alphanumeric characters are replaced with_ wherexx is the hexadecimal character value

e any Python reserved word gets an underscore appended

Python also has support for creating scriptable applications in Python, but The following modules are relevant to
MacPython AppleScript support:

gensuitemodule Create a stub package from an OSA dictionary

aetools Basic support for sending Apple Events

aepack Conversion between Python variables and AppleEvent data containers.
aetypes Python representation of the Apple Event Object Model.

MiniAEFrame Support to act as an Open Scripting Architecture (OSA) server (“Apple Events”).

In addition, support modules have been pre-generatedFfoder , Terminal , Explorer , Netscape ,
CodeWarrior , SystemEvents andStdSuites

3.1 gensuitemodule = — Generate OSA stub packages

Thegensuitemodule module creates a Python package implementing stub code for the AppleScript suites that are
implemented by a specific application, according to its AppleScript dictionary.

Itis usually invoked by the user through tRgthonIDE, but it can also be run as a script from the command line (pass
-helpfor help on the options) orimported from Python code. For an example of its usdagscripts/genallsuites.py’
in a source distribution, which generates the stub packages that are included in the standard library.

It defines the following public functions:

is _scriptable (application
Returns true ifipplication , Which should be passed as a pathname, appears to be scriptable. Take the return
value with a grain of salttnternet Explorer appears not to be scriptable but definitely is.

processfile (applicatior{, output, basepkgname, edihodnames, creatorsignature, dump, vert})se
Create a stub package fapplication , which should be passed as a full pathname. Faigp” bundle this
is the pathname to the bundle, not to the executable inside the bundle; for an unbundled CFM application you
pass the filename of the application binary.

This function asks the application for its OSA terminology resources, decodes these resources and uses the
resultant data to create the Python code for the package implementing the client stubs.

output is the pathname where the resulting package is stored, if not specified a standard "save file as”
dialog is presented to the usetbasepkgname is the base package on which this package will build,
and defaults toStdSuites . Only when generatindStdSuites itself do you need to specify this.

edit _modnamesis a dictionary that can be used to change modulenames that are too ugly after name man-
gling. creator _signature can be used to override the 4-char creator code, which is normally obtained
from the ‘Pkginfo’ file in the package or from the CFM file creator signature. Whemp is given it should

refer to a file object, angrocessfile will stop after decoding the resources and dump the Python repre-
sentation of the terminology resources to this filerbose should also be a file object, and specifying it will
causeprocessfile to tell you what it is doing.

22 Chapter 3. MacPython OSA Modules

processfile _fromresource (applicatior{, output, basepkgname, edibhodnames, creatorsignature, dump,

verbosq)
This function does the same peocessfile , except that it uses a different method to get the terminology
resources. It operapplication as a resource file and reads'a@ete” and"aeut" resources from this
file.
3.2 aetools — OSA client support

Theaetools module contains the basic functionality on which Python AppleScript client support is built. It also
imports and re-exports the core functionality of tietypes andaepack modules. The stub packages generated
by gensuitemodule import the relevant portions @etools , so usually you do not need to import it yourself.
The exception to this is when you cannot use a generated suite package and need lower-level access to scripting.

Theaetools module itself uses the AppleEvent support provided byGhebon.AE module. This has one draw-
back: you need access to the window manager, see section 1.1.2 for details. This restriction may be lifted in future
releases.

Theaetools module defines the following functions:

packevent (ae, parameters, attributgs
Stores parameters and attributes in a pre-credacbon.AE.AEDesc object. parameters and
attributes are dictionaries mapping 4-character OSA parameter keys to Python objects. The objects are
packed usingiepack.pack()

unpackevent (ae[, formodulenam]a)
Recursively unpacks €arbon.AE.AEDesc event to Python objects. The function returns the parameter
dictionary and the attribute dictionary. TRmmodulename argument is used by generated stub packages to
control where AppleScript classes are looked up.

keysubst (.arguments, keydit
Converts a Python keyword argument dictionarguments to the format required byackevent by replac-
ing the keys, which are Python identifiers, by the four-character OSA keys according to the mapping specified
in keydict . Used by the generated suite packages.

enumsubst (arguments, key, edict
If the arguments dictionary contains an entry féeey convert the value for that entry according to dictionary
edict . This converts human-readable Python enumeration hames to the OSA 4-character codes. Used by the
generated suite packages.

Theaetools module defines the following class:

classTalkTo ([signature:None, start=0, timeout:b
Base class for the proxy used to talk to an applicatignature overrides the class attributesignature
(which is usually set by subclasses) and is the 4-char creator code defining the application togtakt to.
can be set to true to enable running the application on class instantidti@out can be specified to change
the default timeout used while waiting for an AppleEvent reply.

_start ()
Test whether the application is running, and attempt to start it if not.

send (code, subcoc{e parameters, attributeb
Create the AppleEvenCarbon.AE.AEDesc for the verb with the OSA designatiocode, subcode
(which are the usual 4-character strings), packgheameters and attributes into it, send it to the
target application, wait for the reply, unpack the reply wittpackevent and return the reply appleevent, the
unpacked return values as a dictionary and the return attributes.

3.2. aetools — OSA client support 23

3.3 aepack — Conversion between Python variables and AppleEvent

data containers

Theaepack module defines functions for converting (packing) Python variables to AppleEvent descriptors and back
(unpacking). Within Python the AppleEvent descriptor is handled by Python objects of built-iABipesc, defined

in moduleCarbon.AE .

Theaepack module defines the following functions:

pack (x[, forcetype])

Returns arAEDesc object containing a conversion of Python value xfolfcetypeis provided it specifies the
descriptor type of the result. Otherwise, a default mapping of Python types to Apple Event descriptor types is

used, as follows:

Python type | descriptor type

FSSpec typeFSS

FSRef typeFSRef

Alias typeAlias

integer typeLong (32 bit integer)
float typeFloat (64 bit floating point)
string typeText

unicode typeUnicodeText

list typeAEList

dictionary typeAERecord

instance see below

If X is a Python instance then this function attempts to callaaepack __() method. This method should

return anAEDesc object.

If the conversiorx is not defined above, this function returns the Python string representation of a value (the
repr() function) encoded as a text descriptor.

unpack (x[, formodulenam]a)

xmust be an object of typ®EDesc. This function returns a Python object representation of the data in the Apple
Event descriptox. Simple AppleEvent data types (integer, text, float) are returned as their obvious Python coun-
terparts. Apple Event lists are returned as Python lists, and the list elements are recursively unpacked. Object

references (exline 3 of document 1
unlessformodulename

) are returned as instancesastypes.ObjectSpecifier ,
is specified. AppleEvent descriptors with descriptor type typeFSS are returned as

FSSpec objects. AppleEvent record descriptors are returned as Python dictionaries, with 4-character string

keys and elements recursively unpacked.
The optionaformodulename argument is used by the stub packages generatgéiguitemodule

, and

ensures that the OSA classes for object specifiers are looked up in the correct module. This ensures that if, say,

the Finder returns an object specifier for a window you get an instariemadér.Window
. The former knows about all the properties and elements a window has in the Finder, while

aetypes.Window
the latter knows no such things.

See Also:
Module Carbon.AE (section 4.1):

and not a generic

Built-in access to Apple Event Manager routines.

Moduleaetypes (section 3.4):

Python definitions of codes for Apple Event descriptor types.

Inside Macintosh: Interapplication Communication
(http://developer.apple.com/techpubs/mac/IAC/IAC-2.html)

Information about inter-process communications on the Macintosh.

Chapter 3. MacPython OSA Modules

3.4 aetypes — AppleEvent objects

Theaetypes defines classes used to represent Apple Event data descriptors and Apple Event object specifiers.

Apple Event data is contained in descriptors, and these descriptors are typed. For many descriptors the Python repre-
sentation is simply the corresponding Python tyigeeText in OSA is a Python stringypeFloat s a float, etc.

For OSA types that have no direct Python counterpart this module declares classes. Packing and unpacking instances
of these classes is handled automaticallyabpack .

An object specifier is essentially an address of an object implemented in a Apple Event server. An Apple Event spec-
ifier is used as the direct object for an Apple Event or as the argument of an optional parametaetyfies

module contains the base classes for OSA classes and properties, which are used by the packages generated by
gensuitemodule to populate the classes and properties in a given suite.

For reasons of backward compatibility, and for cases where you need to script an application for which you have not
generated the stub package this module also contains object specifiers for a number of common OSA classes such as
Document , Window, Character , etc.

The AEObjects module defines the following classes to represent Apple Event descriptor data:

classUnknown(type, data
The representation of OSA descriptor data for whichabpack andaetypes modules have no support, i.e.
anything that is not represented by the other classes here and that is not equivalent to a simple Python value.

classEnun(enum)
An enumeration value with the given 4-character string value.

classinsertionLoc (of, po9
Positionpos in objectof .

classBoolean (bool)
A boolean.

classStyledText (style, tex}
Text with style information (font, face, etc) included.

classAEText (script, style, text
Text with script system and style information included.

classIntlText (' script, language, text
Text with script system and language information included.

classIntlWritingCode (script, languagg
Script system and language information.

classQDPoint (v, h)
A quickdraw point.

classQDRectangle (v0, h0, vl, hl
A quickdraw rectangle.

classRGBColor (1, g, b)
A color.

classType (typg
An OSA type value with the given 4-character name.

classKkeyword (namg
An OSA keyword with the given 4-character name.

classRange(start, stop
Arange.

3.4. aetypes — AppleEvent objects 25

classOrdinal (absg
Non-numeric absolute positions, such'fis" | first, or"midd" , middle.

classLogical (logc, term)
The logical expression of applying operatogc toterm .

classComparison (objl, relo, obj3
The comparisomelo of objl toobj2 .

The following classes are used as base classes by the generated stub packages to represent AppleScript classes and
properties in Python:

classComponentitem (whict{, fr])
Abstract baseclass for an OSA class. The subclass should set the class at@iute the 4-character OSA
class code. Instances of subclasses of this class are equivalent to AppleScript Object Specifiers. Upon instanti-
ation you should pass a selectomhich , and optionally a parent objectfn .

classNProperty (fr)
Abstract basclass for an OSA property. The subclass should set the class attvdmttesndwhich to desig-
nate which property we are talking about. Instances of subclasses of this class are Object Specifiers.

classObjectSpecifier (want, form, selﬂ, fr])
Base class oComponentltem andNProperty , a general OSA Object Specifier. See the Apple Open
Scripting Architecture documentation for the parameters. Note that this class is not abstract.

3.5 MiniAEFrame — Open Scripting Architecture server support

The moduleMiniAEFrame provides a framework for an application that can function as an Open Scripting Ar-
chitecture (OSA) server, i.e. receive and process AppleEvents. It can be used in conjunctiBrewitWork or
standalone. As an example, it is usedPythonCGISlave

TheMiniAEFrame module defines the following classes:

classAEServer ()
A class that handles AppleEvent dispatch. Your application should subclass this class together with ei-

ther MiniApplication or FrameWork.Application . Your __init __() method should call the
__init __() method for both classes.

classMiniApplication 0
A class that is more or less compatible winameWork.Application but with less functionality. Its

event loop supports the apple menu, command-dot and AppleEvents; other events are passed on to the Python
interpreter and/or Sioux. Useful if your application wants to A&Server but does not provide its own
windows, etc.

3.5.1 AEServer Objects

installaehandler (classe, type, callbagk
Installs an AppleEvent handlarlasseandtypeare the four-character OSA Class and Type designatsts,
wildcards are allowed. When a matching AppleEvent is received the parameters are decoded and your callback
is invoked.

callback (_object, *kwarg9
Your callback is called with the OSA Direct Object as first positional parameter. The other parameters are
passed as keyword arguments, with the 4-character designator as name. Three extra keyword parameters are

passed_class and_type are the Class and Type designators aattributes is a dictionary with the
AppleEvent attributes.
The return value of your method is packed waitools.packevent() and sent as reply.

26 Chapter 3. MacPython OSA Modules

Note that there are some serious problems with the current design. AppleEvents which have non-identifier 4-character
designators for arguments are not implementable, and it is not possible to return an error to the originator. This will
be addressed in a future release.

3.5. MiniAEFrame — Open Scripting Architecture server support 27

28

CHAPTER
FOUR

MacOS Toolbox Modules

There are a set of modules that provide interfaces to various MacOS toolboxes. If applicable the module will define
a number of Python objects for the various structures declared by the toolbox, and operations will be implemented as
methods of the object. Other operations will be implemented as functions in the module. Not all operations possible
in C will also be possible in Python (callbacks are often a problem), and parameters will occasionally be different
in Python (input and output buffers, especially). All methods and functions havelac __ string describing their
arguments and return values, and for additional description you are refelredde Macintostor similar works.

These modules all live in a package callearbon . Despite that name they are not all part of the Carbon framework:
CF is really in the CoreFoundation framework and Qt is in the QuickTime framework. The normal use pattern is

from Carbon import AE

Warning! These modules are not yet documented. If you wish to contribute documentation of any of these modules,
please get in touch witlocs@python.org.

Carbon.AE
Carbon.AH
Carbon.App
Carbon.CF
Carbon.CG

Carbon.CaronEvt

Carbon.Cm
Carbon.Ctl
Carbon.Dlg
Carbon.Evt
Carbon.Fm
Carbon.Folder
Carbon.Help
Carbon.List
Carbon.Menu
Carbon.Mlte
Carbon.Qd
Carbon.Qdoffs
Carbon.Qt
Carbon.Res
Carbon.Scrap
Carbon.Snd
Carbon.TE
Carbon.Win
ColorPicker

Interface to the Apple Events toolbox.
Interface to the Apple Help manager.
Interface to the Appearance Manager.
Interface to the Core Foundation.
Interface to the Component Manager.
Interface to the Carbon Event Manager.
Interface to the Component Manager.
Interface to the Control Manager.
Interface to the Dialog Manager.
Interface to the classic Event Manager.
Interface to the Font Manager.

Interface to the Folder Manager.
Interface to the Carbon Help Manager.
Interface to the List Manager.

Interface to the Menu Manager.
Interface to the MultiLingual Text Editor.
Interface to the QuickDraw toolbox.
Interface to the QuickDraw Offscreen APIs.
Interface to the QuickTime toolbox.

Interface to the Resource Manager and Handles.

Interface to the Carbon Scrap Manager.
Interface to the Sound Manager.

Interface to TextEdit.

Interface to the Window Manager.

Interface to the standard color selection dialog.

29

4.1 Carbon.AE — Apple Events
4.2 Carbon.AH — Apple Help
4.3 Carbon.App — Appearance Manager

4.4 Carbon.CF — Core Foundation

The CFBase, CFArray , CFData, CFDictionary , CFString and CFURLobjects are supported, some only
partially.

30 Chapter 4. MacOS Toolbox Modules

4.5 Carbon.CG — Core Graphics

4.6 Carbon.CarbonEvt — Carbon Event Manager
4.7 Carbon.Cm — Component Manager

4.8 Carbon.Ctl — Control Manager

4.9 Carbon.Dlg — Dialog Manager

4.10 Carbon.Evt — Event Manager

4.11 Carbon.Fm — Font Manager

4.12 Carbon.Folder = — Folder Manager

4.13 Carbon.Help — Help Manager

4.14 Carbon.List — List Manager

4.15 Carbon.Menu — Menu Manager

4.16 Carbon.Mlte — MultiLingual Text Editor

4,17 Carbon.Qd — QuickDraw

4.18 Carbon.Qdoffs — QuickDraw Offscreen
4.19 Carbon.Qt — QuickTime

4.20 Carbon.Res — Resource Manager and Handles
4.21 Carbon.Scrap — Scrap Manager

4.22 Carbon.Snd — Sound Manager

4.23 Carbon.TE — TextEdit

4.24 Carbon.Win — Window Manager

4%5 " EolorPicker T2 Color selection dialog >

TheColorPicker module provides access to the standard color picker dialog.

GetColor (prompt, rgh
Show a standard color selection dialog and allow the user to select a color. The user is given instruction by the
promptstring, and the default color is setrgh. rgb must be a tuple giving the red, green, and blue components
of the color. GetColor() returns a tuple giving the user’s selected color and a flag indicating whether they
accepted the selection of cancelled.

32 Chapter 4. MacOS Toolbox Modules

CHAPTER
FIVE

Undocumented Modules

The modules in this chapter are poorly documented (if at all). If you wish to contribute documentation of any of these
modules, please get in touch withcs@python.org.

applesingle
buildtools

py _resource
cfmfile
icopen
macerrors
macresource
Nac
mkcwproject
nsremote
PixMapWrapper
preferences
pythonprefs
quietconsole
videoreader

Rudimentary decoder for AppleSingle format files.

Helper module for BuildApplet, BuildApplication and macfreeze.
Helper to creatéPYC * resources for compiled applications.
Code Fragment Resource module.

Internet Config replacement fopen() .

Constant definitions for many Mac OS error codes.

Locate script resources.

Interface to Navigation Services.

Create CodeWarrior projects.

Wrapper around Netscape OSA modules.

Wrapper for PixMap objects.

Nice application preferences manager with support for defaults.
Specialized preferences manager for the Python interpreter.
Buffered, non-visible standard output.

Read QuickTime movies frame by frame for further processing.

w Widgets for the Mac, built on top dframeWork .

waste Interface to the “WorldScript-Aware Styled Text Engine.”
5.1 applesingle — AppleSingle decoder
5.2 buildtools — Helper module for BuildApplet and Friends
5.3 py_resource — Resources from Python code

This module is primarily used as a help module BarildApplet andBuildApplication . It is able to store compiled
Python code a®YC ’ resources in a file.

5.4 cfmfile

— Code Fragment Resource module

cfmfile is a module that understands Code Fragments and the accompanying “cfrg” resources. It can parse them
and merge them, and is used by BuildApplication to combine all plugin modules to a single executable.

33

5.5 icopen — Internet Config replacement for open()

Importingicopen will replace the builtiropen() with a version that uses Internet Config to set file type and creator
for new files.

5.6 macerrors — Mac OS Errors

macerrors cotains constant definitions for many Mac OS error codes.

5.7 macresource — Locate script resources

macresource helps scripts finding their resources, such as dialogs and menus, without requiring special case code
for when the script is run under MacPython, as a MacPython applet or under OSX Python.

5.8 Nav — NavServices calls

A low-level interface to Navigation Services.

5.9 mkcwproject — Create CodeWarrior projects

mkcwproject creates project files for the Metrowerks CodeWarrior development environment. Itis a helper module
for distutils but can be used separately for more control.

5.10 nsremote — Wrapper around Netscape OSA modules

nsremote is a wrapper around the Netscape OSA modules that allows you to easily send your browser to a given
URL. A related module that may be of interest is thebbrowser module, documented in theéython Library
Reference

5.11 PixMapWrapper — Wrapper for PixMap objects

PixMapWrapper wraps a PixMap object with a Python object that allows access to the fields by name. It also has
methods to convert to and froRIL images.

5.12 preferences — Application preferences manager

Thepreferences module allows storage of user preferences in the system-wide preferences folder, with defaults
coming from the application itself and the possibility to override preferences for specific situations.

34 Chapter 5. Undocumented Modules

5.13 pythonprefs = — Preferences manager for Python

This module is a specialization of tipeeferences module that allows reading and writing of the preferences for
the Python interpreter.

5.14 quietconsole — Non-visible standard output

quietconsole allows you to keep stdio output in a buffer without displaying it (or without displaying the stdout
window altogether, if set witlieditPythonPrefs) until you try to read from stdin or disable the buffering, at which
point all the saved output is sent to the window. Good for programs with graphical user interfaces that do want to
display their output at a crash.

5.15 videoreader = — Read QuickTime movies

videoreader reads and decodes QuickTime movies and passes a stream of images to your program. It also provides
some support for audio tracks.

5.16 W— Widgets built on FrameWork

TheWwidgets are used extensively in tHeE .

5.17 waste — non-Apple TextEdit replacement

See Also:

About WASTE
(http://www.merzwaren.com/waste/)
Information about the WASTE widget and library, including documentation and downloads.

5.13. pythonprefs = — Preferences manager for Python 35

36

APPENDIX
A

History and License

A.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://mwww.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF,tsge//www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (s&e//www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0thru1.2 n/a 1991-1995 CWwWI yes
1.3thru1.5.2 1.2 1995-1999 CNRI yes

1.6 152 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
211 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 211 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 222 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

37

A.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.3.3

. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-

ganization (“Licensee”) accessing and otherwise using Python 2.3.3 software in source or binary form and its
associated documentation.

. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.3.3 alone or in any derivative version, provided, however,
that PSF's License Agreement and PSF’s notice of copyright, i.e., “Copy@gh001-2003 Python Software
Foundation; All Rights Reserved” are retained in Python 2.3.3 alone or in any derivative version prepared by
Licensee.

. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 2.3.3 or any part thereof,

and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.3.3.

. PSF is making Python 2.3.3 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-

TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.3.3 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.3.3 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.3.3, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint

venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

. By copying, installing or otherwise using Python 2.3.3, Licensee agrees to be bound by the terms and conditions

of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,

Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee

a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-

SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

38

Appendix A. History and License

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI"), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI's License Agreement and CNRI’s notice of copyright, i.e., “Copyri@htL995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI's License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URtp://hdl.handle.net/1895.22/1013."

. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-

ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,

. Terms and conditions for accessing or otherwise using Python 39

and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

40 Appendix A. History and License

A

aepack , 24
aetools , 23
aetypes , 25
applesingle , 33
autoGIL , 20

B

buildtools , 33
C

Carbon.AE , 30
Carbon.AH , 30
Carbon.App , 30
Carbon.CaronEvt , 31
Carbon.CF , 30
Carbon.CG , 31
Carbon.Cm , 31
Carbon.Ctl ,31
Carbon.Dlg , 31
Carbon.Evt , 31
Carbon.Fm , 31
Carbon.Folder , 31
Carbon.Help , 31
Carbon.List ,31
Carbon.Menu , 31
Carbon.Milte , 31
Carbon.Qd , 31
Carbon.Qdoffs , 31
Carbon.Qt , 31
Carbon.Res , 31
Carbon.Scrap , 31
Carbon.Snd , 31
Carbon.TE , 31
Carbon.Win , 31

cfmfile , 33
ColorPicker ,31
E

EasyDialogs , 14

MODULE INDEX

F

findertools , 14
FrameWork, 16

G

gensuitemodule , 22

ic ,10
icopen , 34

M

mac, 7

macerrors , 34
macfs , 7

MacOS 11
macostools |, 13
macpath , 7
macresource , 34
MiniAEFrame , 26
mkcwproject , 34

N

Nac, 34
nsremote , 34

P

PixMapWrapper , 34
preferences , 34
py _resource , 33
pythonprefs , 35

Q

quietconsole , 35

Vv

videoreader , 35

W

W35
waste , 35

41

42

Symbols

_quit() (Application method), 18
_start() (TalkTo method), 23

A

aepack (standard modulep4

AEServer (classin MiniAEFrame), 26

AEText (class in aetypes), 25

aetools (standard moduleR3

aetypes (standard moduleR5

Alias Manager, Macintosh, 8

AppleEvents, 14, 26

applesingle (standard moduleB3
Application() (in module FrameWork), 17

as _pathname() (FSSpec method), 9

as _tuple() (FSSpec method), 9
AskFileForOpen() (in module EasyDialogs), 15
AskFileForSave() (in module EasyDialogs), 15
AskFolder() (in module EasyDialogs), 15
AskPassword() (in module EasyDialogs), 14
AskString() (in module EasyDialogs), 14
AskYesNoCancel() (in module EasyDialogs), 14
asyncevents() (Application method), 18
autoGIL (extension moduleR0

AutoGILError (exception in autoGIL), 20

B

Boolean (class in aetypes), 25
BUFSIZ (data in macostools), 13

buildtools (standard moduleB3
C
callback() (AEServer method), 26

Carbon.AE (standard moduleB0
Carbon.AH (standard moduleB0
Carbon.App (standard moduleB0
Carbon.CaronEvt (standard moduleB1
Carbon.CF (standard moduleB0
Carbon.CG (standard moduleB1
Carbon.Cm (standard moduleB1
Carbon.Ctl (standard moduleB1

INDEX

Carbon.Dlg (standard moduleB1
Carbon.Evt (standard moduleB1
Carbon.Fm (standard moduleB1
Carbon.Folder (standard moduleB1
Carbon.Help (standard moduleB1
Carbon.List (standard moduleB1
Carbon.Menu (standard moduleB1
Carbon.Mlte (standard moduleB1
Carbon.Qd (built-in module),31
Carbon.Qdoffs (built-in module),31
Carbon.Qt (standard moduleB1
Carbon.Res (standard moduleB1
Carbon.Scrap (standard moduleB1
Carbon.Snd (standard moduleR1
Carbon.TE (standard moduleB1
Carbon.Win (standard moduleB1
cfmfile (standard moduleB3
close() (Window method), 18
ColorPicker (extension module31
Comparison (class in aetypes), 26
Componentltem (class in aetypes), 26
copy()

in module findertools, 14

in module macostools, 13
copytree() (in module macostools), 13
Creator (FInfo attribute), 10
curval (ProgressBar attribute), 16

D

data
Alias attribute, 9
FSSpec attribute, 9
DebugStr() (in module MacOS), 12

DialogWindow() (in module FrameWork), 17
distutils (built-in module), 34
do _activate()

method, 19

ScrolledWindow method, 19
do_char() (Application method), 18
do _contentclick() (Window method), 18
do _controlhit()

43

ControlsWindow method, 19
ScrolledWindow method, 19
do _dialogevent() (Application method), 18
do _itemhit() (DialogWindow method), 20
do _postresize()
ScrolledWindow method, 19
Window method, 18
do_update() (Window method), 19

E

EasyDialogs (standard module}4
Enum(class in aetypes), 25
enumsubst() (in module aetools), 23
environment variables

PYTHONPATH, 2
Error (exception in MacOS), 12
error (exceptioninic), 10

F

FindApplication() (in module macfs), 9
findertools (standard module},4
FindFolder() (in module macfs), 8

FInfo() (in module macfs), 8
Flags (FInfo attribute), 10

Fldr (FInfo attribute), 10
FrameWork (standard module),6, 26
FSSpec() (in module macfs), 8

G
gensuitemodule (standard module®?2
getabouttext() (Application method), 17

GetArgv() (in module EasyDialogs), 15
GetColor() (in module ColorPicker), 32
GetCreatorAndType() (in module MacOS), 13
GetCreatorType() (FSSpec method), 9
GetDates() (FSSpec method), 9
GetDirectory() (in module macfs), 8
GetErrorString() (in module Mac0OS), 12
GetFInfo() (FSSpec method), 9
Getinfo() (Alias method), 9
getscrollbarvalues()

method), 19
GetTicks() (in module MacQS), 13

H

HandleEvent()

IC (classinic), 10

ic (built-in module),10

icglue (built-in module), 10
icopen (standard moduleB4
idle() (Application method), 18

(ScrolledWindow

(in module MacOS), 12

inc() (ProgressBar method), 16

InsertionLoc (class in aetypes), 25

installaehandler() (AEServer method), 26

installAutoGIL() (in module autoGIL), 20

Internet Config, 10

IntlText (class in aetypes), 25

IntiWritingCode (class in aetypes), 25

is _scriptable() (in module gensuitemodule),
22

K

keysubst() (in module aetools), 23
Keyword (class in aetypes), 25

L

label() (ProgressBar method), 16
launch() (in module findertools), 14
launchurl()

IC method, 11

in module ic, 10
linkmodel (data in MacOS), 11
Location (FInfo attribute), 10
Logical (class in aetypes), 26

M

mac (built-in module),7
macerrors (standard module), 134
macfs (standard module),
Macintosh Alias Manager, 8
MacOS(built-in module),11
macostools (standard module),3
macpath (standard module},
macresource (standard moduleB4
mainloop() (Application method), 17
makeusermenus() (Application method), 17
mapfile()

IC method, 11

in module ic, 10
maptypecreator()

IC method, 11

in module ic, 10
maxval (ProgressBar attribute), 16
Menu() (in module FrameWork), 17
MenuBar() (in module FrameWork), 17
Menultem() (in module FrameWork), 17
Message() (in module EasyDialogs), 14
MiniAEFrame (standard moduleR6
MiniApplication (class in MiniAEFrame), 26
mkalias() (in module macostools), 13
mkcwproject (standard moduleR4
move() (in module findertools), 14

N

Nac (standard moduleB4

44

Index

NewAlias() (FSSpec method), 9

NewAliasMinimal() (FSSpec method), 9

NewAliasMinimalFromFullPath() (in mod-
ule macfs), 9

NProperty (class in aetypes), 26

nsremote (standard moduleB4

O

ObjectSpecifier

open()
DialogWindow method, 19
Window method, 18

Open Scripting Architecture, 26

openrf() (in module MacOS), 13

Ordinal (class in aetypes), 25

os (standard module), 7

os.path (standard module), 7

P

pack() (in module aepack), 24

(class in aetypes), 26

packevent() (in module aetools), 23
parseurl()
IC method, 11

in module ic, 10
PixMapWrapper (standard moduleB4
preferences (standard moduleB4
Print() (in module findertools), 14
processfile() (in module gensuitemodule), 22
processfile _fromresource() (in module

gensuitemodule), 23

ProgressBar() (in module EasyDialogs), 15
PromptGetFile() (in module macfs), 8
py _resource (standard moduleB3
PYTHONPATH, 2
pythonprefs (standard moduleB5

Q

QDPoint (class in aetypes), 25
QDRectangle (class in aetypes), 25
quietconsole (standard moduleB5

R

Range (class in aetypes), 25
RawAlias() (in module macfs), 8
RawFSSpec() (in module macfs), 8

Resolve() (Alias method), 9
ResolveAliasFile() (in module macfs), 8
restart() (in module findertools), 14

RGBColor (class in aetypes), 25
runtimemodel (data in MacOS), 11

S

scalebarvalues()
19

(ScrolledWindow method),

SchedParams() (in module MacOS), 12

scrollbar _callback() (ScrolledWindow
method), 19

scrollbars() (ScrolledWindow method), 19

send() (TalkTo method), 23

Separator() (in module FrameWork), 17

set() (ProgressBar method), 16

setarrowcursor() (in module FrameWork), 17

SetCreatorAndType() (in module MacOS), 13

SetCreatorType() (FSSpec method), 9

SetDates() (FSSpec method), 9

SetEventHandler() (in module MacOS), 12

SetFInfo() (FSSpec method), 9

SetFolder() (in module macfs), 8
settypecreator()

IC method, 11

in module ic, 10
setwatchcursor() (in module FrameWork), 17
shutdown() (in module findertools), 14
sleep() (in module findertools), 14

splash() (in module MacQOS), 12
Standard File, 8

StandardGetFile() (in module macfs), 8
StandardPutFile() (in module macfs), 8
StyledText (class in aetypes), 25
SubMenu() (in module FrameWork), 17
SysBeep() (in module MacOS), 13

T

TalkTo (class in aetools), 23
title() (ProgressBar method), 16
touched() (in module macostools), 13
Type

class in aetypes, 25

FInfo attribute, 10

U

Unknown (class in aetypes), 25

unpack() (in module aepack), 24
unpackevent() (in module aetools), 23
Update() (Alias method), 10

updatescrollbars() (ScrolledWindow

method), 19
V
videoreader (standard moduleB5
w

W(standard moduleB5

waste (standard moduleB5

Window() (in module FrameWork), 17
windowbounds() (in module FrameWork), 17
WMAvailable() (in module MacOS), 13

Index

45

	1 Using Python on a Mac OS 9 Macintosh
	1.1 Getting and Installing MacPython-OSX
	1.1.1 How to run a Python script
	1.1.2 Running scripts with a GUI
	1.1.3 configuration

	1.2 Getting and Installing MacPython-OS9
	1.2.1 Entering the interactive Interpreter
	1.2.2 How to run a Python script
	Drag and drop
	Set Creator and Double Click

	1.2.3 Simulating command line arguments
	1.2.4 Creating a Python script
	In an editor
	Editors with Python modes
	BBedit

	1.2.5 Configuration
	EditPythonPrefs
	Adding modules to the Module Search Path
	Default startup options

	1.3 The IDE
	1.3.1 Using the ``Python Interactive'' window
	1.3.2 Writing a Python Script
	1.3.3 Executing a script from within the IDE
	1.3.4 ``Save as'' versus ``Save as Applet''

	2 MacPython Modules
	2.1 mac --- Implementations for the os module
	2.2 macpath --- MacOS path manipulation functions
	2.3 macfs --- Various file system services
	2.3.1 FSSpec Objects
	2.3.2 Alias Objects
	2.3.3 FInfo Objects

	2.4 ic --- Access to Internet Config
	2.4.1 IC Objects

	2.5 MacOS --- Access to Mac OS interpreter features
	2.6 macostools --- Convenience routines for file manipulation
	2.7 findertools --- The finder's Apple Events interface
	2.8 EasyDialogs --- Basic Macintosh dialogs
	2.8.1 ProgressBar Objects

	2.9 FrameWork --- Interactive application framework
	2.9.1 Application Objects
	2.9.2 Window Objects
	2.9.3 ControlsWindow Object
	2.9.4 ScrolledWindow Object
	2.9.5 DialogWindow Objects

	2.10 autoGIL --- Global Interpreter Lock handling in event loops

	3 MacPython OSA Modules
	3.1 gensuitemodule --- Generate OSA stub packages
	3.2 aetools --- OSA client support
	3.3 aepack --- Conversion between Python variables and AppleEvent data containers
	3.4 aetypes --- AppleEvent objects
	3.5 MiniAEFrame --- Open Scripting Architecture server support
	3.5.1 AEServer Objects

	4 MacOS Toolbox Modules
	4.1 Carbon.AE --- Apple Events
	4.2 Carbon.AH --- Apple Help
	4.3 Carbon.App --- Appearance Manager
	4.4 Carbon.CF --- Core Foundation
	4.5 Carbon.CG --- Core Graphics
	4.6 Carbon.CarbonEvt --- Carbon Event Manager
	4.7 Carbon.Cm --- Component Manager
	4.8 Carbon.Ctl --- Control Manager
	4.9 Carbon.Dlg --- Dialog Manager
	4.10 Carbon.Evt --- Event Manager
	4.11 Carbon.Fm --- Font Manager
	4.12 Carbon.Folder --- Folder Manager
	4.13 Carbon.Help --- Help Manager
	4.14 Carbon.List --- List Manager
	4.15 Carbon.Menu --- Menu Manager
	4.16 Carbon.Mlte --- MultiLingual Text Editor
	4.17 Carbon.Qd --- QuickDraw
	4.18 Carbon.Qdoffs --- QuickDraw Offscreen
	4.19 Carbon.Qt --- QuickTime
	4.20 Carbon.Res --- Resource Manager and Handles
	4.21 Carbon.Scrap --- Scrap Manager
	4.22 Carbon.Snd --- Sound Manager
	4.23 Carbon.TE --- TextEdit
	4.24 Carbon.Win --- Window Manager
	4.25 ColorPicker --- Color selection dialog

	5 Undocumented Modules
	5.1 applesingle --- AppleSingle decoder
	5.2 buildtools --- Helper module for BuildApplet and Friends
	5.3 pyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}resource --- Resources from Python code
	5.4 cfmfile --- Code Fragment Resource module
	5.5 icopen --- Internet Config replacement for open()
	5.6 macerrors --- Mac OS Errors
	5.7 macresource --- Locate script resources
	5.8 Nav --- NavServices calls
	5.9 mkcwproject --- Create CodeWarrior projects
	5.10 nsremote --- Wrapper around Netscape OSA modules
	5.11 PixMapWrapper --- Wrapper for PixMap objects
	5.12 preferences --- Application preferences manager
	5.13 pythonprefs --- Preferences manager for Python
	5.14 quietconsole --- Non-visible standard output
	5.15 videoreader --- Read QuickTime movies
	5.16 W --- Widgets built on FrameWork
	5.17 waste --- non-Apple TextEdit replacement

	A History and License
	A.1 History of the software
	A.2 Terms and conditions for accessing or otherwise using Python

	Module Index
	Index

