Extending and Embedding the Python

Interpreter
Release 2.2

Guido van Rossum
Fred L. Drake, Jr., editor

December 21, 2001

PythonLabs
Email: python-docs@python.org

Copyright(© 2001 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an interpreted, object-oriented programming language. This document describes how to write modules in
C or C++ to extend the Python interpreter with new modules. Those modules can define new functions but also
new object types and their methods. The document also describes how to embed the Python interpreter in another
application, for use as an extension language. Finally, it shows how to compile and link extension modules so that they
can be loaded dynamically (at run time) into the interpreter, if the underlying operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the language;\geeithe
Tutorial. ThePython Reference Manugives a more formal definition of the language. Thehon Library Reference
documents the existing object types, functions and modules (both built-in and written in Python) that give the language
its wide application range.

For a detailed description of the whole Python/C API, see the segay#ien/C API Reference Manual

CONTENTS

Extending Python with C or C++ 1
1.1 ASimple Example. e e e e 1
1.2 Intermezzo: Errors and EXCEpPLiONS e 2
1.3 Backtothe Example e e 4
1.4 The Module’s Method Table and Initialization Function. 5
1.5 Compilationand Linkage. 6
1.6 Calling Python Functionsfrom C e 7
1.7 Extracting Parameters in Extension Functions. 0. 8
1.8 Keyword Parameters for Extension Functions. 12
1.9 Building Arbitrary Values.. e 13
1.10 Reference Counts. e 15
1.11 Writing Extensionsin € L L e e 19
1.12 Providinga C APIforan ExtensionModule 19
Defining New Types 25
2.1 TheBaSICS. o e e 25
2.2 TypeMethods. e e 30
Building C and C++ Extensions onUNIX 39
3.1 Building Custom Interpreters. e 40
3.2 Module Definition OptionNs e e e e e 40
3.3 EXample . . . e e 41
3.4 Distributing your extensionmodules L 41
Building C and C++ Extensions on Windows 43
4.1 A Cookbook Approach 43
4.2 Differences BetweenlUx and Windows 45
4.3 Using DLLSINPractice. 46
Embedding Python in Another Application 47
5.1 VeryHighLevel Embedding e 47
5.2 Beyond Very High Level Embedding: Anoverview 48
5.3 PureEmbedding e 49
5.4 Extending Embedded Python e 51
5.5 Embedding Pythonin€ 52
5.6 Linking Requirements. 52
Reporting Bugs 53
History and License 55

B.1 Historyofthesoftware e
B.2 Terms and conditions for accessing or otherwise using Python

CHAPTER
ONE

Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C.&udehsion modulesan
do two things that can’t be done directly in Python: they can implement new built-in object types, and they can call C
library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions, macros and
variables that provide access to most aspects of the Python run-time system. The Python API is incorporated in a C
source file by including the head#ython.h"

The compilation of an extension module depends on its intended use as well as on your system setup; details are given
in later chapters.

1.1 A Simple Example

Let’s create an extension module callspam’ (the favorite food of Monty Python fans...) and let's say we want to
create a Python interface to the C library functeystem() .! This function takes a null-terminated character string
as argument and returns an integer. We want this function to be callable from Python as follows:

>>> jmport spam
>>> status = spam.system(ls -I")

Begin by creating a filespammodule.c’. (Historically, if a module is calledspam’, the C file containing its imple-
mentation is calledspammodule.c’; if the module name is very long, likespammify ’, the module name can be just
‘spammify.c’.)

The first line of our file can be:

#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a copyright notice if
you like). Since Python may define some pre-processor definitions which affect the standard headers on some systems,
you must includePython.h’ before any standard headers are included.

All user-visible symbols defined byython.h’ have a prefix of Py’ or ‘ PY’, except those defined in standard header
files. For convenience, and since they are used extensively by the Python intefprgteon.h" includes a few
standard header filesistdio.h> |, <string.h> |, <errno.h> | and<stdlib.h> . If the latter header file does
not exist on your system, it declares the functioraloc() ,free() andrealloc() directly.

The next thing we add to our module file is the C function that will be called when the Python expression

1An interface for this function already exists in the standard modsile— it was chosen as a simple and straightfoward example.

‘spam.system(string) ' is evaluated (we’ll see shortly how it ends up being called):

static PyObject *
spam_system(self, args)
PyObject *self;
PyObject *args;

{
char *command;
int sts;
if ('PyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command);
return Py_BuildValue("i", sts);
}

There is a straightforward translation from the argument list in Python (for example, the single exphassion)
to the arguments passed to the C function. The C function always has two arguments, conventionallyatfzaned
args

Theself argument is only used when the C function implements a built-in method, not a function. In the exseatiple,
will always be aNULL pointer, since we are defining a function, not a method. (This is done so that the interpreter
doesn’t have to understand two different types of C functions.)

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of the tuple
corresponds to an argument in the call's argument list. The arguments are Python objects — in order to do anything
with them in our C function we have to convert them to C values. The fun®iphrg _ParseTuple() in the

Python API checks the argument types and converts them to C values. It uses a template string to determine the
required types of the arguments as well as the types of the C variables into which to store the converted values. More
about this later.

PyArg _ParseTuple() returns true (nonzero) if all arguments have the right type and its components have been
stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument list was passed. In the
latter case it also raises an appropriate exception so the calling function canNetukimmediately (as we saw in

the example).

1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails, it should set an
exception condition and return an error value (usuallMW@LL pointer). Exceptions are stored in a static global
variable inside the interpreter; if this variableN&JLL no exception has occurred. A second global variable stores the
“associated value” of the exception (the second argumerdise). A third variable contains the stack traceback

in case the error originated in Python code. These three variables are the C equivalents of the Python variables
sys.exc _type ,sys.exc _value andsys.exc _traceback (see the section on modugs in the Python

Library Referenck It is important to know about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one RyErr _SetString() . Its arguments are an exception object and a C string. The excep-
tion object is usually a predefined object lIRgExc _ZeroDivisionError . The C string indicates the cause of
the error and is converted to a Python string object and stored as the “associated value” of the exception.

Another useful function i®yErr _SetFromErrno() , which only takes an exception argument and constructs the
associated value by inspection of the global varia@nteo . The most general function ByErr _SetObject()
which takes two object arguments, the exception and its associated value. You don't m3edN@CREF() the

2 Chapter 1. Extending Python with C or C++

objects passed to any of these functions.

You can test non-destructively whether an exception has been séty#itin _Occurred() . This returns the current
exception object, oNULL if no exception has occurred. You normally don’t need to BglErr _Occurred() to
see whether an error occurred in a function call, since you should be able to tell from the return value.

When a functiorf that calls another functiogpdetects that the latter fails should itself return an error value (usually
NULLor-1). It shouldnot call one of thePyErr _*() functions — one has already been calledgoy’s caller is

then supposed to also return an error indicatioitstoaller, agairwithoutcalling PyErr _*() , and so on — the most

detailed cause of the error was already reported by the function that first detected it. Once the error reaches the Python
interpreter's main loop, this aborts the currently executing Python code and tries to find an exception handler specified
by the Python programmer.

(There are situations where a module can actually give a more detailed error message by callingPgiothet()
function, and in such cases it is fine to do so. As a general rule, however, this is not necessary, and can cause
information about the cause of the error to be lost: most operations can fail for a variety of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly by calling
PyErr _Clear() . The only time C code should cdyErr _Clear() s if it doesn’t want to pass the error on to

the interpreter but wants to handle it completely by itself (possibly by trying something else, or pretending nothing
went wrong).

Every failingmalloc() call must be turned into an exception — the direct callemafloc() (orrealloc())
must callPyErr _NoMemory() and return a failure indicator itself. All the object-creating functions (for example,
Pyint _FromLong()) already do this, so this note is only relevant to those whomalloc() directly.

Also note that, with the important exceptionf§Arg _ParseTuple() and friends, functions that return an integer
status usually return a positive value or zero for successrfdr failure, like UNIX system calls.

Finally, be careful to clean up garbage (by makilyg XDECREF() or Py_DECREF() calls for objects you have
already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding to all built-in
Python exceptions, such &yExc _ZeroDivisionError , which you can use directly. Of course, you should
choose exceptions wisely — don’t usyyExc _TypeError to mean that a file couldn’t be opened (that should
probably bePyExc _IOError). If something’s wrong with the argument list, tRgArg _ParseTuple() function

usually raise®yExc _TypeError . If you have an argument whose value must be in a particular range or must satisfy
other conditionsPyExc _ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static object variable
at the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization functionnjtspam()) with an exception object (leaving out the error
checking for now):

1.2. Intermezzo: Errors and Exceptions 3

void
initspam(void)

PyObject *m, *d;

m = Py_InitModule("spam", SpamMethods);

d = PyModule_GetDict(m);

SpamError = PyErr_NewException("spam.error”, NULL, NULL);
PyDict_SetltemString(d, "error", SpamError);

Note that the Python name for the exception objespam.error . ThePyErr _NewException() function may
create a class with the base class bé&irgeption (unless another class is passed in insteadWif L), described in
thePython Library Referencender “Built-in Exceptions.”

Note also that th&pamError variable retains a reference to the newly created exception class; this is intentional!
Since the exception could be removed from the module by external code, an owned reference to the class is needed to
ensure that it will not be discarded, causBgamError to become a dangling pointer. Should it become a dangling
pointer, C code which raises the exception could cause a core dump or other unintended side effects.

1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (IPyArg_ParseTuple(args, "s", &command))
return NULL;

It returnsNULL (the error indicator for functions returning object pointers) if an error is detected in the argument list,
relying on the exception set [8yArg _ParseTuple() . Otherwise the string value of the argument has been copied
to the local variableommand This is a pointer assignment and you are not supposed to modify the string to which
it points (so in Standard C, the varialdemmandshould properly be declared aohst char *command).

The next statement is a call to thenlkx function system() , passing it the string we just got from
PyArg _ParseTuple()

sts = system(command);

Our spam.system() function must return the value sts as a Python object. This is done using the function
Py_BuildValue() , which is something like the inverse BiyArg _ParseTuple() : ittakes a format string and
an arbitrary number of C values, and returns a new Python object. More ifg oBuildValue() is given later.

return Py_BuildValue("i", sts);

In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)

If you have a C function that returns no useful argument (a function retunoidy), the corresponding Python
function must returiNone. You need this idiom to do so:

4 Chapter 1. Extending Python with C or C++

Py_INCREF(Py_None);
return Py_None;

Py_None is the C name for the special Python objiicine. It is a genuine Python object rather thaNldLL pointer,
which means “error” in most contexts, as we have seen.

1.4 The Module’s Method Table and Initialization Function

| promised to show howpam_system() is called from Python programs. First, we need to list its name and address
in a “method table™:

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, 0, NULL} [* Sentinel */

Note the third entry METHVARARGS. This is a flag telling the interpreter the calling convention to be used for the
C function. It should normally always b®METH VARARGSor ‘ METHVARARGS | METHKEYWORDS value
of 0 means that an obsolete variantyfArg _ParseTuple() is used.

When using only METHVARARGS the function should expect the Python-level parameters to be passed in as a
tuple acceptable for parsing ikyArg _ParseTuple() ; more information on this function is provided below.

The METHKEYWORDISt may be set in the third field if keyword arguments should be passed to the function. In this
case, the C function should accept a thiRyObject * ’ parameter which will be a dictionary of keywords. Use
PyArg _ParseTupleAndKeywords() to parse the arguments to such a function.

The method table must be passed to the interpreter in the module’s initialization function. The initialization function
must be namethit name€) , wherenameis the name of the module, and should be the only static item
defined in the module file:

void
initspam(void)

{
}

(void) Py_InitModule("spam", SpamMethods);

Note that for G-+, this method must be declaredtern "C"

When the Python program imports modigam for the first time,initspam() is called. (See below for com-
ments about embedding Python.) It cafg_InitModule() , Which creates a “module object” (which is inserted

in the dictionarysys.modules under the key'spam"), and inserts built-in function objects into the newly cre-
ated module based upon the table (an arrapyi¥lethodDef structures) that was passed as its second argument.
Py _InitModule() returns a pointer to the module object that it creates (which is unused here). It aborts with a
fatal error if the module could not be initialized satisfactorily, so the caller doesn’t need to check for errors.

When embedding Python, thaitspam() function is not called automatically unless there's an entry in the
_Pylmport _Inittab table. The easiest way to handle this is to statically initialize your statically-linked mod-
ules by directly callingnitspam() after the call taPy _Initialize() or PyMac_lInitialize()

1.4. The Module’s Method Table and Initialization Function 5

int main(int argc, char **argv)

{
/* Pass argv[0] to the Python interpreter */
Py_SetProgramName(argv[0]);

/* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Add a static module */
initspam();

An example may be found in the fil®@émo/embed/demo.c’ in the Python source distribution.

Note: Removing entries fronsys.modules or importing compiled modules into multiple interpreters within a
process (or following dork() without an interveninggxec()) can create problems for some extension mod-
ules. Extension module authors should exercise caution when initializing internal data structures. Note also that
the reload() function can be used with extension modules, and will call the module initialization function
(initspam() in the example), but will not load the module again if it was loaded from a dynamically loadable
object file (“so’ on UNIX, ‘.dII' on Windows).

A more substantial example module is included in the Python source distributidoasiés/xxmodule.c’. This file

may be used as a template or simply read as an examplen®tielator.py script included in the source distribution

or Windows install provides a simple graphical user interface for declaring the functions and objects which a module
should implement, and can generate a template which can be filled in. The script lives Tfodisémodulator/’
directory; see theREADME! file there for more information.

1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the Python
system. If you use dynamic loading, the details depend on the style of dynamic loading your system uses; see the
chapters about building extension modules onXJ(chapter 3) and Windows (chapter 4) for more information about

this.

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python interpreter, you
will have to change the configuration setup and rebuild the interpreter. Luckily, this is very simple: just place your
file (*spammodule.c’ for example) in the Modules/’ directory of an unpacked source distribution, add a line to the file
‘Modules/Setup.local’ describing your file:

spam spammodule.o

and rebuild the interpreter by runningake in the toplevel directory. You can also rumake in the ‘Modules/’
subdirectory, but then you must first rebuilddkefile’ there by running make Makefile’. (This is necessary each time
you change theSetup’ file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration file as well,
for instance:

spam spammodule.o -IX11

6 Chapter 1. Extending Python with C or C++

1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful: calling Python
functions from C. This is especially the case for libraries that support so-called “callback” functions. If a C interface
makes use of callbacks, the equivalent Python often needs to provide a callback mechanism to the Python program-
mer; the implementation will require calling the Python callback functions from a C callback. Other uses are also
imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to call a Python function.
(I won’t dwell on how to call the Python parser with a particular string as input — if you're interested, have a look at
the implementation of thec command line option inPython/pythonmain.c’ from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python function object. You
should provide a function (or some other interface) to do this. When this function is called, save a pointer to the Python
function object (be careful tBy_INCREF() it!) in a global variable — or wherever you see fit. For example, the
following function might be part of a module definition:

static PyObject *my_callback = NULL;

static PyObject *
my_set_callback(dummy, args)
PyObject *dummy, *args;

{
PyObject *result = NULL;
PyObject *temp;
if (PyArg_ParseTuple(args, "O:set_callback”, &temp)) {
if ('PyCallable_Check(temp)) {
PyErr_SetString(PyExc_TypeError, "parameter must be callable");
return NULL;
}
Py XINCREF(temp); /* Add a reference to new callback */
Py _XDECREF(my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */
[* Boilerplate to return "None" */
Py _INCREF(Py_None);
result = Py_None;
}
return result;
}

This function must be registered with the interpreter usingMBES H VARARG$lag; this is described in section 1.4,
“The Module’s Method Table and Initialization Function.” TRgArg _ParseTuple() function and its arguments
are documented in section 1.7, “Extracting Parameters in Extension Functions.”

The macroPy_XINCREF() andPy_XDECREF() increment/decrement the reference count of an object and are
safe in the presence dfULL pointers (but note thaempwill not be NULL in this context). More info on them in
section 1.10, “Reference Counts.”

Later, when it is time to call the function, you call the C functiBgpEval _CallObject() . This function has

two arguments, both pointers to arbitrary Python objects: the Python function, and the argument list. The argument
list must always be a tuple object, whose length is the number of arguments. To call the Python function with no
arguments, pass an empty tuple; to call it with one argument, pass a singletorPyipRuildValue() returns a

tuple when its format string consists of zero or more format codes between parentheses. For example:

1.6. Calling Python Functions from C 7

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

[* Time to call the callback */

arglist = Py_BuildValue("(i)", arg);

result = PyEval_CallObject(my_callback, arglist);
Py_DECREF(arglist);

PyEval _CallObject() returns a Python object pointer: this is the return value of the Python fundigk-
val _CallObject() is “reference-count-neutral” with respect to its arguments. In the example a new tuple was
created to serve as the argument list, whicRys DECREF()-ed immediately after the call.

The return value oPyEval _CallObject() is “new”: either it is a brand new object, or it is an existing object
whose reference count has been incremented. So, unless you want to save it in a global variable, you should somehow
Py_DECREF() the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return valueNgoitL If it is, the Python function
terminated by raising an exception. If the C code that cdilgBval _CallObject() is called from Python, it

should now return an error indication to its Python caller, so the interpreter can print a stack trace, or the calling
Python code can handle the exception. If this is not possible or desirable, the exception should be cleared by calling
PyErr _Clear() . Forexample:

if (result == NULL)

return NULL; /* Pass error back */
...use result...
Py_DECREF(result);

Depending on the desired interface to the Python callback function, you may also have to provide an argument list
to PyEval _CallObject() . In some cases the argument list is also provided by the Python program, through the
same interface that specified the callback function. It can then be saved and used in the same manner as the function
object. In other cases, you may have to construct a new tuple to pass as the argument list. The simplest way to do this
is to callPy_BuildValue() . For example, if you want to pass an integral event code, you might use the following
code:

PyObject *arglist;

arglist = Py_BuildValue("(l)", eventcode);
result = PyEval_CallObject(my_callback, arglist);
Py_DECREF(arglist);
if (result == NULL)

return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF(result);

Note the placement oPy_DECREF(arglist) ' immediately after the call, before the error check! Also note that
strictly spoken this code is not complefy_BuildValue() may run out of memory, and this should be checked.

1.7 Extracting Parameters in Extension Functions

ThePyArg _ParseTuple() function is declared as follows:

8 Chapter 1. Extending Python with C or C++

int PyArg_ParseTuple(PyObject *arg, char *format, ...);

Thearg argument must be a tuple object containing an argument list passed from Python to a C functitommiBthe
argument must be a format string, whose syntax is explained below. The remaining arguments must be addresses of
variables whose type is determined by the format string. For the conversion to succesed,dbgct must match the

format and the format must be exhausted. On sucé®gstg _ParseTuple() returns true, otherwise it returns

false and raises an appropriate exception.

Note that whilePyArg _ParseTuple() checks that the Python arguments have the required types, it cannot check
the validity of the addresses of C variables passed to the call: if you make mistakes there, your code will probably
crash or at least overwrite random bits in memory. So be careful!

A format string consists of zero or more “format units”. A format unit describes one Python object; it is usually

a single character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not
a parenthesized sequence normally corresponds to a single address arguRydrgtaParseTuple() . In the

following description, the quoted form is the format unit; the entry in (round) parentheses is the Python object type
that matches the format unit; and the entry in [square] brackets is the type of the C variable(s) whose address should
be passed. (Use th&“operator to pass a variable’s address.)

Note that any Python object references which are provided to the callboeevedreferences; do not decrement
their reference count!

‘s’ (string or Unicode object) [char *] Convert a Python string or Unicode object to a C pointer to a character string.
You must not provide storage for the string itself; a pointer to an existing string is stored into the character pointer
variable whose address you pass. The C string is null-terminated. The Python string must not contain embedded
null bytes; if it does, a'ypeError exception is raised. Unicode objects are converted to C strings using the
default encoding. If this conversion fails, BmicodeError s raised.

‘s#’ (string, Unicode or any read buffer compatible object) [char *, int] This variant on §’ stores into two C
variables, the first one a pointer to a character string, the second one its length. In this case the Python string
may contain embedded null bytes. Unicode objects pass back a pointer to the default encoded string version of
the object if such a conversion is possible. All other read buffer compatible objects pass back a reference to the
raw internal data representation.

‘z’ (string or None) [char *] Like ‘s’, but the Python object may also one, in which case the C pointer is set
to NULL

‘z#’ (string or None or any read buffer compatible object) [char *, int] Thisisto's#’'as‘z’isto’‘s’.

‘u’ (Unicode object) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a null-terminated buffer
of 16-bit Unicode (UTF-16) data. As witls', there is no need to provide storage for the Unicode data buffer; a
pointer to the existing Unicode data is stored into the ®MICODE pointer variable whose address you pass.

‘u#’ (Unicode object) [Py_UNICODE *, int] This variant on i’ stores into two C variables, the first one a pointer
to a Unicode data buffer, the second one its length.

‘es’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer] This
variant on 5§’ is used for encoding Unicode and objects convertible to Unicode into a character buffer. It only
works for encoded data without embedd¢dLL bytes.

The variant reads one C variable and stores into two C variables, the first one a pointer to an encoding name
string encoding, and the second a pointer to a pointer to a character btiftauffer, the buffer used for storing
the encoded data).

The encoding name must map to a registered codec. If $diitd, the default encoding is used.

PyArg _ParseTuple() will allocate a buffer of the needed size usifgMem NEW(), copy the encoded
data into this buffer and adju¥buffer to reference the newly allocated storage. The caller is responsible for
callingPyMem Free() to free the allocated buffer after usage.

1.7. Extracting Parameters in Extension Functions 9

‘et ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same asés’ except that string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

‘es#’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer _length]
This variant on $#’ is used for encoding Unicode and objects convertible to Unicode into a character buffer.
It reads one C variable and stores into three C variables, the first one a pointer to an encoding name string
(encoding, the second a pointer to a pointer to a character buffdwuffer, the buffer used for storing the
encoded data) and the third one a pointer to an intégeiffer_length the buffer length).

The encoding name must map to a registered codec. If $dtitd, the default encoding is used.
There are two modes of operation:

If *buffer points aNULL pointer, PyArg _ParseTuple() will allocate a buffer of the needed size using
PyMem.NEW(), copy the encoded data into this buffer and adjimtffer to reference the newly allocated
storage. The caller is responsible for callilgMem Free() to free the allocated buffer after usage.

If *buffer points to a norNULL pointer (an already allocated buffeByArg _ParseTuple() will use this
location as buffer and interprébuffer_lengthas buffer size. It will then copy the encoded data into the buffer
and O-terminate it. Buffer overflow is signalled with an exception.

In both casestbuffer_lengthis set to the length of the encoded data without the trailing 0-byte.
‘et# ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]

Same aséds# ' except that string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

‘b’ (integer) [char] Convert a Python integer to a tiny int, stored in &l@r .
‘h’ (integer) [short int] Convert a Python integer to asbort int

‘i’ (integer) [int] Convert a Python integer to a plainia@ .

‘1’ (integer) [long int] Convert a Python integer to aléng int

‘L’ (integer) [LONG _LONG] Convert a Python integer to aléng long . This format is only available on plat-
forms that supporong long (or _int64 on Windows).

‘c’ (string of length 1) [char] Convert a Python character, represented as a string of length 1, ¢tharC
‘f ’ (float) [float] Convert a Python floating point number to dl@at

‘d’ (float) [double] Convert a Python floating point number to alGuble .

‘D (complex) [Py_complex] Convert a Python complex number to &¢_complex structure.

‘O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
notNULL

‘Ol” (object) [typeobjectPyObject *] Store a Python object in a C object pointer. This is similar@o but takes
two C arguments: the first is the address of a Python type object, the second is the address of the C variable
(of type PyObject *) into which the object pointer is stored. If the Python object does not have the required
type, TypeError s raised.

‘O& (object) [converter anything] Convert a Python object to a C variable througtoaverterfunction. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to
void * . Theconverterfunction in turn is called as follows:

status = converte(object addres},

whereobjectis the Python object to be converted aaddressis thevoid * argument that was passed to
PyArg _ConvertTuple() . The returnedtatusshould bel for a successful conversion afdf the conver-
sion has failed. When the conversion fails, toaverterfunction should raise an exception.

10 Chapter 1. Extending Python with C or C++

‘S’ (string) [PyStringObject *] Like ‘O but requires that the Python object is a string object. Ralsg®Error
if the object is not a string object. The C variable may also be declarBg@bject *

‘U (Unicode string) [PyUnicodeObject *] Like ‘O but requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declafegisject *

‘t# ' (read-only character buffer) [char *, int] Like ‘s#’, but accepts any object which implements the read-only
buffer interface. Thehar * variable is set to point to the first byte of the buffer, anditite is set to the
length of the buffer. Only single-segment buffer objects are accepygatError s raised for all others.

‘W (read-write character buffer) [char *] Similar to ‘s’, but accepts any object which implements the read-write
buffer interface. The caller must determine the length of the buffer by other means, ov#isestead. Only
single-segment buffer objects are acceplggieError s raised for all others.

‘w# (read-write character buffer) [char *, int] Like ‘s#’, but accepts any object which implements the read-write
buffer interface. Thehar * variable is set to point to the first byte of the buffer, anditite is set to the
length of the buffer. Only single-segment buffer objects are accepigeError is raised for all others.

‘(itemg ’ (tuple) [matching-item$ The object must be a Python sequence whose length is the number of format units
in items The C arguments must correspond to the individual format unitemns Format units for sequences
may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual pa-
rameters, not an arbitrary sequence. Code which previously caygedError to be raised here may now
proceed without an exception. This is not expected to be a problem for existing code.

It is possible to pass Python long integers where integers are requested; however no proper range checking is done —
the most significant bits are silently truncated when the receiving field is too small to receive the value (actually, the
semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

‘| * Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg _ParseTuple() does not touch the contents of the corresponding C variable(s).

;7 The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception thiyArg _ParseTuple() raises).

‘; ' The list of format units ends here; the string after the semicolon is used as the error niestsagief the default
error message. Clearly," and ‘; ' mutually exclude each other.

Some example calls:

int ok;
int i, j;
long k, I;
char *s;
int size;

ok = PyArg_ParseTuple(args, ™); /* No arguments */
[* Python call: f() */

ok = PyArg_ParseTuple(args, "s", &s); /* A string */
[* Possible Python call: f('whoops!’) */

1.7. Extracting Parameters in Extension Functions 11

ok = PyArg_ParseTuple(args, "lIs", &k, &I, &s); /* Two longs and a string */
[* Possible Python call: f(1, 2, 'three’) */

ok = PyArg_ParseTuple(args, "(ii)s#", &i, &, &s, &size);
[* A pair of ints and a string, whose size is also returned */
[* Possible Python call: f((1, 2), 'three’) */

{
char *file;
char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
[* Possible Python calls:
f('spam’)
f(spam’, 'w’)
f('spam’, 'wb’, 100000) */
}
{
int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, "((ii)(ii))(ii)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
[* Possible Python call:
f(((0, 0), (400, 300)), (10, 10)) */
}
{
Py _complex c;
ok = PyArg_ParseTuple(args, "D:myfunction”, &c);
[* a complex, also providing a function name for errors */
[* Possible Python call: myfunction(1+2j) */
}

1.8 Keyword Parameters for Extension Functions
ThePyArg _ParseTupleAndKeywords() function is declared as follows:

int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
char *format, char **kwlist, ...);

Thearg andformatparameters are identical to those of ygArg _ParseTuple() function. Thekwdictparameter

is the dictionary of keywords received as the third parameter from the Python runtimkewlistarameter is &lULL-
terminated list of strings which identify the parameters; the names are matched with the type informatifofram
from left to right. On succes®yArg _ParseTupleAndKeywords() returns true, otherwise it returns false and

12 Chapter 1. Extending Python with C or C++

raises an appropriate exception.

Note: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in which are not
present in th&wlist will causeTypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff PhilbiltickK@hks.com):

#include "Python.h"

static PyObject *
keywdarg_parrot(self, args, keywds)
PyObject *self;
PyObject *args;
PyObject *keywds;

{
int voltage;
char *state = "a stiff";
char *action = "voom";
char *type = "Norwegian Blue";
static char *kwlist[] = {"voltage", "state", "action", "type", NULL};
if ('PyArg_ParseTupleAndKeywords(args, keywds, "i|sss", kwlist,
&voltage, &state, &action, &type))
return NULL;
printf("-- This parrot wouldn't %s if you put %i Volts through it.\n",
action, voltage);
printf("-- Lovely plumage, the %s -- It's %s\n", type, state);
Py_INCREF(Py_None);
return Py_None;
}

static PyMethodDef keywdarg_methods[] = {
/* The cast of the function is necessary since PyCFunction values
* only take two PyObject* parameters, and keywdarg_parrot() takes
* three.
*/
{"parrot", (PyCFunction)keywdarg_parrot, METH_VARARGS|METH_KEYWORDS,
"Print a lovely skit to standard output."},
{NULL, NULL, 0, NULL} /* sentinel */

h

void
initkeywdarg(void)
{

/* Create the module and add the functions */
Py_InitModule("keywdarg", keywdarg_methods);

}

1.9 Building Arbitrary Values

This function is the counterpart ®yArg _ParseTuple() . Itis declared as follows:

1.9. Building Arbitrary Values 13

PyObject *Py_BuildValue(char *format, ...);

It recognizes a set of format units similar to the ones recognizeBydyrg _ParseTuple() , but the arguments
(which are input to the function, not output) must not be pointers, just values. It returns a new Python object, suitable
for returning from a C function called from Python.

One difference witlPyArg _ParseTuple() : while the latter requires its first argument to be a tuple (since Python
argument lists are always represented as tuples internB§y)BuildValue() does not always build a tuple. It
builds a tuple only if its format string contains two or more format units. If the format string is empty, it rétones

if it contains exactly one format unit, it returns whatever object is described by that format unit. To force it to return a
tuple of size 0 or one, parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, as &rahéd ‘s#’ for-

mats, the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py_Buildvalue() . In other words, if your code invokesialloc() and passes the allocated memory to
Py_BuildValue() , your code is responsible for calliffgee() for that memory oncéy_BuildValue()

returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python object
type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units stth as
This can be used to make long format strings a tad more readable.

‘s’ (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointdbisL, None is
used.

‘s#’ (string) [char *, int] Convert a C string and its length to a Python object. If the C string poinfdtisl, the
length is ignored andllone is returned.

‘z’ (string or None) [char *] Same ass’.
‘z#’ (string or None) [char *, int] Same ass#'.

‘u’ (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2) data to a Python Uni-
code object. If the Unicode buffer pointerN8JLL, None is returned.

‘u#’ (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2) data buffer and its length to a Python
Unicode object. If the Unicode buffer pointerNeJLL, the length is ignored andone is returned.

‘i’ (integer) [int] Convert a plain Gnt to a Python integer object.

‘b’ (integer) [char] Same asi*'.

‘h’ (integer) [short int] Same asi‘'.

‘I’ (integer) [long int] Converta dong int to a Python integer object.

‘c’ (string of length 1) [char] Converta dnt representing a character to a Python string of length 1.
‘d’ (float) [double] Convert a Cdouble to a Python floating point number.

‘f’ (float) [float] Same asd’.

‘D (complex) [Py_complex *] Convert a CPy_complex structure to a Python complex number.

‘O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented by
one). If the object passed in isSNJLL pointer, it is assumed that this was caused because the call producing
the argument found an error and set an exception. TherdfgreBuildValue() will return NULL but won't
raise an exception. If no exception has been raisedPygixc _SystemError s set.

14 Chapter 1. Extending Python with C or C++

‘S’ (object) [PyObject *] Same asO.
‘U (object) [PyObject *] Same asO.

‘N’ (object) [PyObject *] Same asO, except it doesn’t increment the reference count on the object. Useful when
the object is created by a call to an object constructor in the argument list.

‘O& (object) [converter anything] Convertanythingto a Python object through@nverterfunction. The function
is called withanything(which should be compatible wittoid *) as its argument and should return a “new”
Python object, oNULL if an error occurred.

‘(itemg ’ (tuple) [matching-item$ Convert a sequence of C values to a Python tuple with the same number of items.
‘[itemq ’ (list) [matching-item$ Convert a sequence of C values to a Python list with the same number of items.
‘{ itemg ’ (dictionary) [matching-item$ Convert a sequence of C values to a Python dictionary. Each pair of con-

secutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, tlRyExc _SystemError exception is raised andULL returned.

Examples (to the left the call, to the right the resulting Python value):

Py_BuildValue(") None
Py_BuildValue("i", 123) 123
Py_BuildValue(tiii", 123, 456, 789) (123, 456, 789)
Py_BuildValue("s", "hello") 'hello’
Py_BuildValue("ss", "hello", "world") (hello’, 'world’)
Py_BuildValue("s#", "hello”, 4) ‘hell’
Py_BuildValue("()") 0
Py_Buildvalue("(i)", 123) (123,)
Py_Buildvalue("(ii)", 123, 456) (123, 456)
Py_BuildValue("(i,i)", 123, 456) (123, 456)
Py_BuildValue("[i,i]", 123, 456) [123, 456]

Py_BuildValue(*{s:i,s:i}",

"abc", 123, "def", 456) {'abc’ 123, ’'def: 456}
Py_BuildValue("((ii)(ii)) (ii)",

1, 2, 3, 4, 5, 6) (@, 2), @3, 4), (5, 6)

1.10 Reference Counts

In languages like C or €+, the programmer is responsible for dynamic allocation and deallocation of memory on
the heap. In C, this is done using the functionalloc() andfree() . In C++, the operatorsew anddelete

are used with essentially the same meaning; they are actually implementednadiog() andfree() , sowe’ll
restrict the following discussion to the latter.

Every block of memory allocated witmalloc() should eventually be returned to the pool of available memory by
exactly one call tdree() . It is important to califree() at the right time. If a block’s address is forgotten but
free() is not called for it, the memory it occupies cannot be reused until the program terminates. This is called a
memory leakOn the other hand, if a program cditee() for a block and then continues to use the block, it creates

a conflict with re-use of the block through anothealloc() call. This is calledusing freed memoryt has the same

bad consequences as referencing uninitialized data — core dumps, wrong results, mysterious crashes.

Common causes of memory leaks are unusual paths through the code. For instance, a function may allocate a block of
memory, do some calculation, and then free the block again. Now a change in the requirements for the function may
add a test to the calculation that detects an error condition and can return prematurely from the function. It's easy to

1.10. Reference Counts 15

forget to free the allocated memory block when taking this premature exit, especially when it is added later to the code.
Such leaks, once introduced, often go undetected for a long time: the error exit is taken only in a small fraction of all
calls, and most modern machines have plenty of virtual memory, so the leak only becomes apparent in a long-running
process that uses the leaking function frequently. Therefore, it's important to prevent leaks from happening by having
a coding convention or strategy that minimizes this kind of errors.

Since Python makes heavy usenadlloc() andfree() , it needs a strategy to avoid memory leaks as well as the

use of freed memory. The chosen method is cakéerence countingThe principle is simple: every object contains

a counter, which is incremented when a reference to the object is stored somewhere, and which is decremented when
a reference to it is deleted. When the counter reaches zero, the last reference to the object has been deleted and the
object is freed.

An alternative strategy is callemlitomatic garbage collectionfSometimes, reference counting is also referred to as

a garbage collection strategy, hence my use of “automatic” to distinguish the two.) The big advantage of automatic
garbage collection is that the user doesn’t need tdfie) explicitly. (Another claimed advantage is an improve-

ment in speed or memory usage — this is no hard fact however.) The disadvantage is that for C, there is no truly
portable automatic garbage collector, while reference counting can be implemented portably (as long as the functions
malloc() andfree() are available — which the C Standard guarantees). Maybe some day a sufficiently portable
automatic garbage collector will be available for C. Until then, we’ll have to live with reference counts.

While Python uses the traditional reference counting implementation, it also offers a cycle detector that works to detect
reference cycles. This allows applications to not worry about creating direct or indirect circular references; these are
the weakness of garbage collection implemented using only reference counting. Reference cycles consist of objects
which contain (possibly indirect) references to themselves, so that each object in the cycle has a reference count which
is non-zero. Typical reference counting implementations are not able to reclaim the memory belonging to any objects
in a reference cycle, or referenced from the objects in the cycle, even though there are no further references to the
cycle itself.

The cycle detector is able to detect garbage cycles and can reclaim them so long as there are no finalizers implemented
in Python (__del __() methods). When there are such finalizers, the detector exposes the cycles throagh the
module(specifically, thegarbage variable in that module). Thgc module also exposes a way to run the detector
(thecollect() function), as well as configuration interfaces and the ability to disable the detector at runtime. The
cycle detector is considered an optional component; though it is included by default, it can be disabled at build time
using the--without-cycle-gcoption to theconfigure script on WNix platforms (including Mac OS X) or by removing

the definition ofWITH_CYCLE_GCin the ‘pyconfig.h’ header on other platforms. If the cycle detector is disabled in

this way, thegc module will not be available.

1.10.1 Reference Counting in Python

There are two macro®y_INCREF(x) andPy_DECREF(x), which handle the incrementing and decrementing of
the reference counPy_DECREF() also frees the object when the count reaches zero. For flexibility, it doesn’t call
free() directly — rather, it makes a call through a function pointer in the objégbe object For this purpose (and
others), every object also contains a pointer to its type object.

The big question now remains: when to B¢ INCREF(x) and Py _DECREF(x)? Let’s first introduce some

terms. Nobody “owns” an object; however, you @mn a referencéo an object. An object’s reference count is now

defined as the number of owned references to it. The owner of a reference is responsible foPgalitCREF()

when the reference is no longer needed. Ownership of a reference can be transferred. There are three ways to dispose
of an owned reference: pass it on, store it, or Bgll DECREF(). Forgetting to dispose of an owned reference creates

a memory leak.

It is also possible tdorrow? a reference to an object. The borrower of a reference should nd®galDECREF().
The borrower must not hold on to the object longer than the owner from which it was borrowed. Using a borrowed
reference after the owner has disposed of it risks using freed memory and should be avoided completely.

2The metaphor of “borrowing” a reference is not completely correct: the owner still has a copy of the reference.
3Checking that the reference count is at leadb&s not work— the reference count itself could be in freed memory and may thus be reused

16 Chapter 1. Extending Python with C or C++

The advantage of borrowing over owning a reference is that you don’t need to take care of disposing of the reference
on all possible paths through the code — in other words, with a borrowed reference you don'’t run the risk of leaking
when a premature exit is taken. The disadvantage of borrowing over leaking is that there are some subtle situations
where in seemingly correct code a borrowed reference can be used after the owner from which it was borrowed has in
fact disposed of it.

A borrowed reference can be changed into an owned reference by ®RJlinlCREF() . This does not affect the
status of the owner from which the reference was borrowed — it creates a new owned reference, and gives full owner
responsibilities (the new owner must dispose of the reference properly, as well as the previous owner).

1.10.2 Ownership Rules

Whenever an object reference is passed into or out of a function, it is part of the function’s interface specification
whether ownership is transferred with the reference or not.

Most functions that return a reference to an object pass on ownership with the reference. In particular, all functions
whose function it is to create a new object, suckgisit _FromLong() andPy_BuildValue() , pass ownership

to the receiver. Even if the object is not actually new, you still receive ownership of a new reference to that object. For
instancePyInt _FromLong() maintains a cache of popular values and can return a reference to a cached item.

Many functions that extract objects from other objects also transfer ownership with the reference, for iRg@ince

ject _GetAttrString() . The picture is less clear, here, however, since a few common routines are exceptions:
PyTuple _Getltem() ,PyList _Getltem() ,PyDict _Getltem() ,andPyDict _GetltemString() all

return references that you borrow from the tuple, list or dictionary.

The functionPylmport _AddModule() also returns a borrowed reference, even though it may actually create the
object it returns: this is possible because an owned reference to the object is s&yediodules

When you pass an object reference into another function, in general, the function borrows the reference from you —
if it needs to store it, it will usé’y_INCREF() to become an independent owner. There are exactly two important
exceptions to this rulePyTuple _Setltem() andPyList _Setltem() . These functions take over ownership of

the item passed to them — even if they fail! (Note tRgDict _Setltem() and friends don't take over ownership

— they are “normal.”)

When a C function is called from Python, it borrows references to its arguments from the caller. The caller owns a
reference to the object, so the borrowed reference’s lifetime is guaranteed until the function returns. Only when such a
borrowed reference must be stored or passed on, it must be turned into an owned reference BycdNGIREF() .

The object reference returned from a C function that is called from Python must be an owned reference — ownership
is tranferred from the function to its caller.

1.10.3 Thin Ice

There are a few situations where seemingly harmless use of a borrowed reference can lead to problems. These all have
to do with implicit invocations of the interpreter, which can cause the owner of a reference to dispose of it.

The first and most important case to know about is usiggDECREF() on an unrelated object while borrowing a
reference to a list item. For instance:

for another object!

1.10. Reference Counts 17

bug(PyObject *list) {
PyObject *item = PyList_Getltem(list, 0);

PyList_Setltem(list, 1, PyInt_FromLong(OL));
PyObject_Print(item, stdout, 0); /* BUG! */

This function first borrows a referencelist[0] , then replacefist[1] with the value0, and finally prints the
borrowed reference. Looks harmless, right? But it's not!

Let’s follow the control flow intoPyList _Setltem() . The list owns references to all its items, so when item

1 is replaced, it has to dispose of the original item 1. Now let's suppose the original item 1 was an instance of a
user-defined class, and let’s further suppose that the class definatbh __() method. If this class instance has a
reference count of 1, disposing of it will call its del __() method.

Since it is written in Python, the_del __() method can execute arbitrary Python code. Could it perhaps do some-
thing to invalidate the referenceitem in bug() ? You bet! Assuming that the list passed ibtay() is accessible
tothe__del __() method, it could execute a statement to the effectief ‘list[0] ', and assuming this was the
last reference to that object, it would free the memory associated with it, thereby invalitenmng

The solution, once you know the source of the problem, is easy: temporarily increment the reference count. The
correct version of the function reads:

no_bug(PyObject *list) {
PyObject *item = PyList_Getltem(list, 0);

Py_INCREF(item);

PyList_Setltem(list, 1