Debugging with ruby-debug

0.10.4 Edition
October 2010

Rocky Bernstein and Kent Sibilev

Table of Contents

1 Summary of ruby-debug 1
1.1 The First Sample rdebug Session (list, display, print, and
QUL) ettt 1
1.2 Sample Session 2: Delving Deeper (where, frame, restart,
autoeval, break, PS) ... veutntite e 3
1.3 Using the debugger in unit testing (ruby-debug/debugger,
DeEbUEEET . STATT) .o\ttt ettt et 7
1.4 Using the Debugger.start with a block....................... 10
1.5 How debugging Ruby may be different than debugging other
Languagesot 11
1.5.1 Stack Shows Scope Nesting..............cooiiiiiia.. 11
1.5.2 More Frequent Evaluations per Line...................... 12
1.5.3 Bouncing Around in Blocks (e.g. Iterators) 14
1.5.4 No Parameter Values in a Call Stack 15
1.5.5 Lines You Can Stop At.......ooiiiiiiiiiii i, 15
2 Gettinginandout................ ... 17
2.1 Starting the debugger......... 17
2.1.1 Options you can pass tordebug 17
2.1.2 How to Set Default Command-Line Options 20
2.2 Command files.o 20
2.3 Quitting the debugger...... ... i 21
2.4 Calling the debugger from inside your Ruby program.......... 21
3 ruby-debug Command Reference.............. 23
3.1 Command Interfaces........... i 23
3.2 Command SYNtaxouueettmit i, 23
3.3 Command Outpuboouuiiii e 24
3.4 Getting help (‘help’).....oovniiiii e 24
3.4.1 Help on Subcommands.............cooiiiiiiiiiiiii, 24
3.5 Controlling the debugger (‘quit’, ‘restart’, ‘interrupt’,
SSOULCE) Lottt 25
350 QUIt (‘QUATY) ..t 25
3.5.2 Restart (‘restart’)coiiiiiiiiiiiiii 26
3.5.3 Interrupt (‘interrupt’) 26
3.5.4 Running Debugger Commands (‘source’)................. 26
3.6 Executing expressions on stop (‘display’, ‘undisplay’)........ 26
3.7 Evaluating and Printing Expressions (‘p’, ‘pp’, ‘putl’, ‘ps’, ‘irb’)
... 27
3.7.1 Printing an expression (‘eval’, ‘p’) ...l 27
3.7.2 Pretty-Printing an expression (‘pp’, ‘putl’, ‘ps’)) 27

3.7.3 Runirb ((drb’)o 28

ii

3.8 Printing Variables (‘var’, ‘method’)............cooviuininn... 29
3.9 Examining Program Source Files (‘list’)...................... 30
3.10 Editing Source files (‘edit’)..... ..ot 31
3.11 Examining the Stack Frame (‘where’, ‘up’, ‘down’, ‘frame’) ... 31
3.11.1 Stackframes........... ... 32
3.11.2 Backtraces (‘where’) i 32
3.11.3 Selecting a frame (‘up’, ‘down’, ‘frame’).................. 32
3.12 Stopping and Resuming Execution 33
3.12.1 Breakpoints (‘break’, ‘catch’, ‘delete’)................. 33
3.12.2 Disabling breakpoints (‘disable’, ‘enable’) 35
3.12.3 Break conditions (‘condition’)..............l 36
3.12.4 Resuming Execution (‘step’, ‘next’, ‘finish’, ‘continue’)
.. 36
3.12.4.1 Step (‘Step’) cvviriii e 36
3.12.4.2 Next (‘mext’)..... ..o 37
3.12.4.3 Finish (Finish’)........ooooiiiiiinieiil 37
3.12.4.4 Continue (‘continue’)............cooviiiiiiiiiai.... 37
3.13 ruby-debug settings (‘set args’, ‘set autoeval’..)............ 38
3.13.1 Set/Show argsoovuiiiiiiiii i 38
3.13.2 Set/Show auto-eval 38
3.13.3 Execute “list” command on every breakpoint............ 38
3.13.4 Set/Show auto-irb.......... ... 39
3.13.5 Set/Show auto-reloadccoiiiL, 39
3.13.6 Set/Show basename.................coiiiiiiiiiiiiia.. 39
3.13.7 Set/Show call style..........o 39
3.13.8 Set/Show Forces Different Line Step/Next............... 39
3.13.9 Set/Show Frame full path.............. 39
3.13.10 Command History Parameters 40
3.13.11 Save frame binding on each call 40
3.13.12 Set/Show Line tracingcioiiiiia. 40
3.13.13 Set/Show Line tracing style............................ 40
3.13.14 Set/Show lines in a List command...................... 40
3.13.15 Show Post-mortem handling............................ 41
3.13.16 Display stack trace when ’eval’ raises exception......... 41
3.13.17 Set/Show Line width............................ 41
3.14 Program Information (‘info’)............coooiiiiiiiiiiiiin... 41

4 Post-Mortem Debugging...................... 43

ruby-debug

5 The Debugger Module and Class 45
5.1 The Debugger Module ..., 45
5.1.1 Debugger.start, Debugger.started?, Debugger.stop,
Debugger . TUN_SCTipt. ...ttt 45
5.1.2 Debugger.context................oiiiiiiiiiii i 46
5.1.3 Debugger.settings.............. ... i 46
5.2 The Debugger Class.ccoueiiiiiniiiniiiiiiiinnn.. 47
5.2.1 The Debugger: :Breakpoint Class........................ 48
5.2.2 The Debugger: :Context Class........................... 48
5.2.3 The Debugger: :Command Class..................coevn... 49
5.3 Additions to Kerneloiiiiiiiiiiiiiiiiii 50

Appendix A Building and Installing from
rubyforge’s Subversion Repository.......... 53

A.1 Prerequisites: To build the package you’ll need at a minimum:

... 53

A.2 Basic Package Checkout and Installation...................... 53

A.3 Trying Out without Installing................................. 54

A.4 Running the Regression Tests............ooooiiiiiiii., 54
A.5 Building the Documentation and Testing/Installing Emacs Files

... 54

A.6 Building for Microsoft Windows, 54

Class, Module Method Index..................... 57

Command Index................................... 59

iii

Chapter 1: Summary of ruby-debug 1

1 Summary of ruby-debug

The purpose of a debugger such as ruby-debug is to allow you to see what is going on
“inside” a Ruby program while it executes.

rdebug can do four main kinds of things (plus other things in support of these) to help
you catch bugs in the act:

e Start your script, specifying anything that might affect its behavior.
e Make your script stop on specified conditions.
e Examine what has happened, when your script has stopped.

e Change things in your script, so you can experiment with correcting the effects of one
bug and go on to learn about another.

Although you can use rdebug to invoke your Ruby programs via a debugger at the
outset, there are other ways to use and enter the debugger.

1.1 The First Sample rdebug Session (list, display, print,
and quit)

You can use this manual at your leisure to read all about ruby-debug. However, a handful of
commands are enough to get started using the debugger. The following sections illustrates
these commands.

In this sample session, we emphasize user input like this: input, to make it easier to pick
out from the surrounding output.

Below is Ruby code to compute a triangle number of a given length.!

$ rdebug triangle.rb
triangle.rb:4 def hanoi(n,a,b,c)
(rdb:1) list
[-1, 8] in ./triangle.rb
1 #!/usr/bin/env ruby
2 # Compute the n'th triangle number - the hard way
3 # triangle(n) == (n * (n+1)) / 2
4 def triangle(n)
5 tri = 0
6 0.upto(n) do [il
7 tri += 1
8 end
(rdb:1) 1
[9, 18] in ./triangle.rb
9 return tri
10 end
11
12 puts triangle(3)
(rdb:1) list 1,100
[1, 100] in ./triangle.rb
1 #!/usr/bin/env ruby
2 # Compute the n'th triangle number - the hard way

1 There are of course shorter ways to define triangle such as:
def triangle(n) (n * (n+1)) / 2 end

The code we use in this example and the next is more for pedagogical purposes than how to write short
Ruby code.

2 ruby-debug

3 # triangle(n) == (n * (n+1)) / 2
=>4 def triangle(n)

5 tri =0

6 0.upto(n) do |il

7 tri += 1

8 end

9 return tri

10 end

11

12 puts triangle(3)
(rdb:1)

There are lots of command options, but we don’t need them for now. See Section 2.1.1
[rdebug command-line options|, page 17 for a full list of command options.

Position information consists of a filename and line number, e.g. triangle.rb:4. We
are currently stopped before the first executable line of the program; this is line 4 of
triangle.rb. If you are used to less dynamic languages and have used debuggers for
more statically compiled languages like C, C++, or Java, it may seem odd to be stopped
before a function definition. But in Ruby line 4 is executed, the name triangle (probably)
does not exist so issuing a method call of triangle will raise a “method not found” error.

ruby-debug’s prompt is (rdb:n). The n is the thread number. Here it is 1 which is
usually the case for the main thread. If the program has died and you are in post-mortem
debugging, there is no thread number. In this situation, the string post-mortem is used in
place of a thread number. If the program has terminated normally, the string this position
will be ctrl. The commands which are available change depending on the program state.

The first command, 1ist (see Section 3.9 [List], page 30), prints 10 lines centered around
the current line; the current line here is line 4 and is marked by =>, so the range the debugger
would like to show is -1..8. However since there aren’t 5 lines before the current line, those
additional lines—“lines” -1 and 0—are dropped and we print the remaining 8 lines. The
list command can be abbreviated with 1 which is what we use next. Notice that when we
use this a second time, we continue listing from the place we last left off. The desired range
of lines this time is lines 9 to 18; but since the program ends as line 12, only the remaining
4 lines are shown.

If you want to set how many lines to print by default rather than use the initial number
of lines, 10, use the set listsize command (see Section 3.13.14 [Listsize|, page 40). To
see the entire program in one shot, we gave an explicit starting and ending line number.

If you use a front-end to the debugger such as the Emacs interface, you probably won’t
use list all that much.

Now let us step through the program.

(rdb:1) step
triangle.rb:12
puts triangle(3)
(rdb:1) <RET>
triangle.rb:5

tri = 0
(rdb:1) p tri
nil

(rdb:1) step
triangle.rb:6
0.upto(n) do [il

Chapter 1: Summary of ruby-debug 3

(rdb:1) p tri
0

The first step command (see Section 3.12.4.1 [Step|, page 36) runs the script one ex-
ecutable unit. The second command we entered was just hitting the return key; rdebug
remembers the last command you entered was step, so it runs that last command again.

One way to print the values of variables uses p. (Of course, there are of course lots of
other ways t00.). When we look at the value of tri the first time, we see it is nil. Again
we are stopped before the assignment on line 5, and this variable hasn’t been set previously.
However after issuing another “step” command we see that the value is 0 as expected. You
could issue the step and print comman in one shot:

However if every time we stop we want to see the value of tri to see how things are
going stop, there is a better way by setting a display expression (see Section 3.6 [Display-
Commands], page 26).

(rdb:1) display tri
1: tri = 0

Now let us run the program until we return from the function. However we’ll want to
see which lines get run.

(rdb:1) display i

2: 1=

(rdb:1) set linetrace on

line tracing is on.

(rdb:1) finish

Tracing(1l) :triangle.rb:7 tri += i
1: tri = 0

2: 1=0

Tracing(1) :triangle.rb:7 tri += i
1: tri =0

2:1=1

Tracing(1) :triangle.rb:7 tri += i
1: tri =1

2: 1 =2

Tracing(1) :triangle.rb:7 tri += 1
1: tri =3

2: 1=3

Tracing(1) :triangle.rb:9 return tri
1: tri = 6

2: 1=

(rdb:1) quit

Really quit? (y/n) y

So far, so good. A you can see from the above to get out of the debugger, one can issue a
quit command. (q and exit are just as good. If you want to quit without being prompted,
suffix the command with an exclamation mark, e.g.\q!.

1.2 Sample Session 2: Delving Deeper (where, frame,
restart, autoeval, break, ps)
In this section we’ll introduce breakpoints, the call stack and restarting. So far we’ve been

doing pretty good in that we’ve not encountered a bug to fix. Let’s try another simple
example. Okay here’s the program.

4 ruby-debug

Below we will debug a simple Ruby program to solve the classic Towers of Hanoi puzzle.
It is augmented by the bane of programming: some command-parameter processing with
error checking.

$ rdebug hanoi.rb

hanoi.rb:3 def hanoi(n,a,b,c)
(rdb:1) list 1,100

[1, 100] in ./hanoi.rb

1 #!/usr/bin/ruby
2
=> 3 def hanoi(n,a,b,c)
4 if n-1 > 0
5 hanoi(n-1, a, c, b)
6 end
7 puts "Move disk %s to %s" % [a, bl
8 if n-1 >0
9 hanoi(n-1, c, b, a)
10 end
11 end

12
13 i_args=ARGV.length
14 if i_args > 1

15 puts "*** Need number of disks or no parameter"
16 exit 1
17 end
18
19 n=3
20
21 if i_args > O
22 begin
23 n = ARGV[O].to_i
24 rescue ValueError, msg:
25 print "x* Expecting an integer, got: Y%s" % ARGV[O].to_s
26 exit 2
27 end
28 end
29
30 if n <1 or n > 100
31 puts "#** number of disks should be between 1 and 100"
32 exit 2
33 end
34
35 hanoi(n, :a, :b, :c)
(rdb:1)

Recall in the first section I said that before the def is run the method it names is
undefined. Let’s check that out. First let’s see what private methods we can call before
running def hanoi

(rdb:1) set autoeval on

autoeval is on.

(rdb:1) private_methods

["select", "URI", "local_variables", "lambda", "chomp",

The set autoeval (see Section 3.13.2 [Autoeval], page 38) command causes any com-
mands that are not normally understood to be debugger commands to get evaluated as
though they were Ruby commands. I use this a lot, so I set this by putting it the command
file .rdebugrc, see Section 2.2 [Command Files|, page 20, that gets read when ruby-debug
starts.

Chapter 1: Summary of ruby-debug)

As showing the list output of private_methods, I find this kind of list unwieldy. What
you are supposed to notice here is that method hanoi is not in this list. When you ask
ruby-debug for a list of method names via method instance, it doesn’t show output in this
way; ruby-debug can sort and put into columns lists like this using the print command, ps.

(rdb:1) ps private_methods

Array exit! puts warn
Float fail raise

Integer fork rand

Rational format readline

String gem_original_require readlines

URI getc remove_instance_variable

N gets scan

abort global_variables select

active_gem_with_options
at_exit
autoload
autoload?
binding
block_given?
callcc
caller

catch

chomp

chomp!

chop

chop!
dbg_print
dbg_puts
eval

exec

exit

gsub

gsub!
initialize
initialize_copy
iterator?
lambda

load
local_variables
location_of_caller
loop
method_missing
open

P

19%

print

printf

proc

putc

Now let’s see what happens after stepping

(rdb:1) private.methods.member?("hanoi")

false
(rdb:1) step
hanoi.rb:13

i_args=ARGV.length

(rdb:1) private_methods.member?("hanoi")

true
(rdb:1)

Okay, now where were we?

(rdb:1) list
[8, 17] in ./hanoi.rb

set_trace_func
singleton_method_added
singleton_method_removed

singleton_method_undefined

sleep
split
sprintf
srand

sub

sub!
syscall
system
test
throw
timeout
trace_var
trap
untrace_var

8 if n-1 > 0
9 hanoi(n-1, c, b, a)
10 end
11 end
12
=> 13 i_args=ARGV.length
14 if i_args > 1
15 puts "**x Need number of disks or no parameter"
16 exit 1
17 end

(rdb:1) ARGV
(1

6 ruby-debug

Ooops. We forgot to specify any parameters to this program. Let’s try again. We can
use the restart command here.

(rdb:1) restart 3
Re exec'ing:
/usr/bin/rdebug hanoi.rb 3
hanoi.rb:3
def hanoi(n,a,b,c)
(rdb:1) break 4
Breakpoint 1 file hanoi.rb, line 4
(rdb:1) continue
Breakpoint 1 at hanoi.rb:4
./hanoi.rb:4 if n-1 > 0
(rdb:1) display n

1: n=3
(rdb:1) display a
2: a=a

(rdb:1) undisplay 2
(rdb:1) display a.inspect
3: a.inspect = :a
(rdb:1) display b.inspect
4: b.inspect = :b
(rdb:1) continue
Breakpoint 1 at hanoi.rb:4
./hanoi.rb:4
if n-1 > 0
1: n=2
3: a.inspect = :a
4: b.inspect
(rdb:1) c
Breakpoint 1 at hanoi.rb:4
./hanoi.rb:4
if n-1 > 0
l:n=1
3: a.inspect
4: b.inspect
(rdb:1) where
-=> #0 Object.hanoi(n#Fixnum, a#Symbol, b#Symbol, c#Symbol) at line hanoi.rb:4
#1 Object.- (n#Fixnum, a#Symbol, b#Symbol, c#Symbol) at line hanoi.rb:5
#2 Object.- (n#Fixnum, a#Symbol, b#Symbol, c#Symbol) at line hanoi.rb:5
#3 at line hanoi.rb:35
(rdb:1)

]
(¢

ra
:b

In the above we added a new command, break (see Section 3.12.1 [Breakpoints|, page 33)
which indicates to go into the debugger just before that line of code is run. And continue
resumes execution. Notice the difference between display a and display a.inspect. An
implied string conversion is performed on the expression after it is evaluated. To remove
a display expression we used undisplay is used. If we give a display number, just that
display expression is removed.

Above we also used a new command where (see Section 3.11.2 [Backtrace|, page 32 to
show the call stack. In the above situation, starting from the bottom line we see we called
the hanoi from line 35 of the file hanoi.rb and the hanoi method called itself two more
times at line 5.

In the call stack we show the file line position in the same format when we stop at a line.
Also we see the names of the parameters and the types that those parameters currently
have. It’s possible that when the program was called the parameter had a different type,

Chapter 1: Summary of ruby-debug 7

since the types of variables can change dynamically. You alter the style of what to show in
the trace (see Section 3.13.7 [Callstyle], page 39).
Let’s explore a little more. Now were were we?

(rdb:1) list
1 #!/usr/bin/ruby

2
3 def hanoi(n,a,b,c)
=>4 if n-1 > 0
5 hanoi(n-1, a, c, b)
6 end
7 puts "Move disk %s to %s" % [a, bl
8 if n-1 > 0

(rdb:1) undisplay

Clear all expressions? (y/n) y

(rdb:1) i_args

NameError Exception: undefined local variable or method “i_args' for main:0Object

(rdb:1) frame -1

#3 at line hanoi.rb:35

(rdb:1) i_args

1

(rdb:1) pn

3

(rdb:1) down 2

#2 Object.- (n#Fixnum, a#Symbol, b#Symbol, c#Symbol) at line hanoi.rb:5

(rdb:1) pn

2

Notice in the above to get the value of variable n, I have to use a print command like p

n; If I entered just n, that would be taken to mean the debugger command “next”. In the
current scope, variable i_args is not defined. However I can change to the top-most frame
by using the frame command. Just as with arrays, -1 means the last one. Alternatively

using frame number 3 would have been the same thing; so would issuing up 3.

Note that in the outside frame 3, the value of i_args can be shown. Also note that the
value of variable n is different.

1.3 Using the debugger in unit testing (ruby-debug/debugger,
Debugger.start)

In the previous sessions we’ve been calling the debugger right at the outset. I confess that
this mode of operation is usually not how I use the debugger.

There are a number of situations where calling the debugger at the outset is impractical
for a couple of reasons.

1. The debugger just doesn’t work when run at the outset. By necessity any debugging
changes to the behavior or the program in slight and subtle ways, and sometimes this
can hinder finding the bugs.

2. There’s a lot of code which that needs to get run before the part you want to inspect.
Running this code takes time and you don’t the overhead of the debugger in this first
part.

In this section we’ll delve show how to enter the code in the middle of your program,
while delving more into the debugger operation.

8 ruby-debug

In this section we will also use unit testing. Using unit tests will greatly reduce the
amount of debugging needed while at the same time increase the quality of your program.

What we’ll do is take the triangle code from the first session and write a unit test
for that. In a sense we did write a mini-test for the program which was basically the last
line where we printed the value of triangle(3). This test however wasn’t automated: the
implication is that someone would look at the output and verify that what was printed is
what was expected.

And before we can turn that into something that can be required, we probably want
to remove that output. However I like to keep in that line so that when I look at the file, I
have an example of how to run it. Therefore we will conditionally run this line if that file
is invoked directly, but skip it if it is not.>
if __FILE__ == $0

puts triangle(3)
end

Let’s call this file tri2.rb.

Okay, we're now ready to write our unit test. We’ll use "test/unit" which comes with
the standard Ruby distribution. Here’s the test code:
#!/usr/bin/env ruby
require 'test/unit'’
require 'tri2.rb'

class TestTri < Test::Unit::TestCase
def test_basic
solutions = []
0.upto(5) do il
solutions << triangle(i)
end
assert_equal([0, 1, 3, 6, 10, 15], solutioms,
'Testing the first 5 triangle numbers')
end
end

If you run it will work. However if you run rdebug initially, you will not get into the
test, because test/unit wants to be the main program. So here is a situation where one
may need to modify the program to add an explicit entry into the debugger.?

One way to do this is to add the following before the place you want to stop:

require 'rubygems'
require 'ruby-debug/debugger'’
The line require "rubygems" is needed if ruby-debug is installed as a Ruby gem.

Let’s add this code just after entering test_basic:

def test_basic
require "rubygems"
require "ruby-debug/debugger"
solutions = []

Now we run the program..

2 rdebug resets $0 to try to make things like this work.

3 For some versions of rake and rdebug you can in fact set a breakpoint after running rdebug initially.
Personally though I find it much simpler and more reliable to modify the code as shown here.

Chapter 1: Summary of ruby-debug 9

$ ruby test-tri.rb
Loaded suite test-tri
Started
test-tri.rb:9
solutions = []
(rdb:1)

and we see that we are stopped at line 9 just before the initialization of the list solutions.

Now let’s see where we are...

(rdb:1) where
-=> #0 TestTri.test_basic at line /home/rocky/ruby/test-tri.rb:9
(rdb:1)

Something seems wrong here; TestTri.test_basic indicates that we are in class
TestTri in method test_basic. However we don’t see the call to this like we did in the
last example when we used the where command. This is because the debugger really
didn’t spring into existence until after we already entered that method, and Ruby doesn’t
keep call stack information around in a way that will give the information we show when
running where.

If we want call stack information, we have to turn call-stack tracking on beforehand.
This is done by adding Debugger.start.

Here’s what our test program looks like so after we modify it to start tracking calls from
the outset

#!/usr/bin/env ruby
require 'test/unit'
require 'tri2.rb'
require 'rubygems'
Debugger.start

class TestTri < Test::Unit::TestCase
def test_basic
debugger
solutions = []
0.upto(5) do |il
solutions << triangle(i)
end
assert_equal([0, 1, 3, 6, 10, 15], solutioms,
"Testing the first 5 triangle numbers")
end
end

Now when we run this:

$ ruby test-tri2.rb
Loaded suite test-tri2
Started
test-tri2.rb:11
solutions = []
(rdb:1) where
-=> #0 TestTri.test_basic at line test-tri2.rb:11
#1 Kernel.__send__(result#Test::Unit::TestResult)
at line /usr/lib/ruby/1.8/test/unit/testcase.rb:70
#2 Test::Unit::TestCase.run(result#Test::Unit::TestResult)
at line /usr/lib/ruby/1.8/test/unit/testcase.rb:70

#11 Test::Unit::AutoRunner.run
at line /usr/lib/ruby/1.8/test/unit/autorunner.rb:200

10 ruby-debug

#12 Test::Unit::AutoRunner.run(force_standalone#FalseClass, ...
at line /usr/lib/ruby/1.8/test/unit/autorunner.rb:13
#13 at line /usr/lib/ruby/1.8/test/unit.rb:285
(rdb:1)

Much better. But again let me emphasize that the parameter types are those of the
corresponding variables that currently exist, and this might have changed since the time
when the call was made. Even so and even though we only have types listed, it’s a pretty
good bet that when Test: :Unit was first called, shown above as frame 12, that the values
of its two parameters were false and nil.

1.4 Using the Debugger.start with a block

We saw that Debugger.start () and Debugger.stop() allow fine-grain control over where
the debugger tracking should occur.

Rather than use an explicit stop(), you can also pass a block to the start () method.
This causes start() to run and then yield to that block. When the block is finished,
stop() is run. In other words, this wraps a Debugger.start() and Debugger.stop()
around the block of code. But it also has a side benefit of ensuring that in the presence
of an uncaught exception stop is run, without having to explicitly use begin ... ensure
Debugger.stop() end.

For example, in Ruby Rails you might want to debug code in one of the controllers
without causing any slowdown to any other code. And this can be done by wrapping
the controller in a start() with a block; when the method wrapped this way finishes the
debugger is turned off, and the application proceeds at regular speed.

Of course, inside the block you will probably want to enter the debugger using
Debugger.debugger (), otherwise there would little point in using the start. For example,
you can do this in irb:

$ irb

irb(main) :001:0> require flrubygemsfl; require flruby-debugfl
=> true

irb(main) :002:0> def foo
irb(main) : 003:1> x=1
irb(main) :004:1> puts fifoofl
irb(main) : 005:1> end

=> nil

irb(main) :006:0> Debugger.start{debugger; foo}
(irb):6

(rdb:1) s

(irb):3

(rdb:1) px

nil

(rdb:1) s

(irb):4

(rdb:1) px

1

(rdb:1) s

foo

=> true

irb(main) : 007:0>

There is a counter inside of Debugger.start method to make sure that this works when
another Debugger . start method is called inside of outer one. However if you are stopped

Chapter 1: Summary of ruby-debug 11

inside the debugger, issuing another debugger call will not have any effect even if it is
nested inside another Debugger.start.

1.5 How debugging Ruby may be different than debugging
other Languages

If you are used to debugging in other languages like C, C++, Perl, Java or even Bash®, there
may be a number of things that seem or feel a little bit different and may confuse you. A
number of these things aren’t oddities of the debugger per see, so much as a difference in
how Ruby works compared to those other languages. Because Ruby works a little differently
from those other languages, writing a debugger has to also be a little different as well if it
is to be useful.

In this respect, using the debugger may help you understand Ruby better.

We'’ve already seen two examples of such differences. One difference is the fact that
we stop on method definitions or def’s and that’s because these are in fact executable
statements. In other compiled languages this would not happen because that’s already
been done when you compile the program (or in Perl when it scans in the program). The
other difference we saw was in our inability to show call stack parameter types without
having made arrangements for the debugger to track this. In other languages call stack
information is usually available without asking assistance of the debugger.®

In this section we’ll consider some other things that might throw off new users to Ruby
who are familiar with other languages and debugging in them.

1.5.1 Stack Shows Scope Nesting

In a backtrace, you will find more stack frames than you might in say C.

Consider another way to write the triangle program of see Section 1.1 [First Sample
Session], page 1.
#!/usr/bin/env ruby
def triangle(n)
(0..n).inject do |sum, i
sum +=i
end
end
puts triangle(3)

~NOoO O WN

Let’s stop inside the inject block:

$ rdebug tri3.rb

(rdb:1) c 4

tri3.rb:4

sum +=i

(rdb:1) where

--> #0 Range.triangle at line tri3.rb:4
#1 Enumerable.inject at line tri3.rb:3
#2 Object.triangle(n#Fixnum) at line tri3.rb:3
#3 at line tri3.rb:7

(rdb:1)

Because a new scope was entered, it appears as a stack frame. Probably “scope” frame
would be a more appropriate name.

4 this is just an excuse to put in a shameless plug for my bash debugger http://bashdb.sf.net
5 However in C, and C++ generally you have to ask the compiler to add such information.

http://bashdb.sf.net

12

1.5.2 More Frequent Evaluations per Line

ruby-debug

Consider this simple program to compute the Greatest Common Divisor of two numbers:

[

#!/usr/bin/env ruby
GCD. We assume positive numbers

def gcd(a, b)
Make: a <= b
if a>b
a, b = [b, al
end

© 00N O WN

10 return nil if a <= 0

12 if a == 1 or b-a ==
13 return a

14 end

16 return gcd(b-a, a)
16 end

18 a, b = ARGV[0..1].map {larg| arg.to_i}

19 puts "The GCD of Jd and %d is %d" % [a, b, gcd(a, b)]

Now let’s try tracing a portion of the program to see what we get.

$ rdebug gcd.rb 3 5

gcd.rb:4

def gcd(a, b)

(rdb:1) step

gcd.rb:18

a, b = ARGV[0..1] .map {larg| arg.to_i}
(rdb:1) step

ged.rb:18

a, b = ARGV[0..1] .map {larg| arg.to_i}
(rdb:1) step

gcd.rb:18

a, b = ARGV[0..1] .map {largl| arg.to_i}
(rdb:1) step

(rdb:1) break Object.ged

Breakpoint 1 at Object::gcd

(rdb:1) continue

Breakpoint 1 at Object:gcd

gcd.rb:4

def gcd(a, b)

(rdb:1) set linetrace on

line tracing is on.

(rdb:1) continue

Tracing(1):gcd.rb:6 if a > b

Tracing(1) :gcd.rb:6 if a > b
Tracing(1):gcd.rb:10 return nil if a <= 0
Tracing(1) :gcd.rb:10 return nil if a <= 0
Tracing(1):gcd.rb:12 if a == 1 or b-a ==
Tracing(1):gcd.rb:12 if a == 1 or b-a ==
Tracing(1) :gcd.rb:15 return gcd(b-a, a)
Breakpoint 1 at Object:gcd

gcd.rb:4

def gcd(a, b)

(rdb:1)

The thing to note here is that we see lots of lines duplicated. For example, the first line:

Chapter 1: Summary of ruby-debug 13

Tracing(1):gcd.rb:18 a, b = ARGV[0..1] .map {largl| arg.to_i}

appears three times. If we were to break this line into the equivalent multi-line expression:

a, b = ARGV[0..1] .map do |argl
arg.to_i
end

we would find one stop at the first line before running map and two listings of arg.to_i,
once for each value of arg which here is 0 and then 1. Perhaps this is is not surprising
because we have a loop here which gets run in this situation 3 times. A similar command
next, can also be used to skip over loops and method calls.

But what about all the duplicated if statements in gcd? Each one is listed twice whether
or not we put the if at the beginning or the end. You will find this to be the case for any
conditional statement such as until or while.

Each statement appears twice because we stop once before the expression is evaluated
and once after the expression is evaluated but before the if statement takes hold. There is
a bug in Ruby up to version 1.8.6 in that we stop a second time before the evaluation, so
examining values that may have changed during the expression evaluation doesn’t work in
these versions.

If you are issuing a step command one at a time, the repetitive nature can be little
cumbersome if not annoying. So ruby-debug offers a variant called step+ which forces a
new line on every step. Let’s try that.

(rdb:1) R

Re exec'ing:

/usr/bin/rdebug gcd.rb 3 5

gcd.rb:4

def gcd(a, b)

(rdb:1) step+

gcd.rb:18

a, b = ARGV[0..1] .map {larg| arg.to_i}
(rdb:1) step+

ged.rb:19

puts "The GCD of %d and %d is %d" % [a, b, gcd(a, b)]
(rdb:1) break Object.ged

Breakpoint 1 at Object:gcd

(rdb:1) c

Breakpoint 1 at Object:gcd

gcd.rb:4

def gcd(a, b)

(rdb:1) set linetrace+

line tracing style is different consecutive lines.
(rdb:1) set linetrace on

line tracing is on.

(rdb:1) c

Tracing(1):gcd.rb:6 if a > b

Tracing(1) :gcd.rb:10 return nil if a <= 0
Tracing(1):gcd.rb:12 if a == 1 or b-a ==
Tracing(1) :gcd.rb:15 return gcd(b-a, a)
Breakpoint 1 at Object:gcd

gcd.rb:4

def gcd(a, b)

If you want step+ to be the default behavior when stepping, issue the command set
forcestep on, (see Section 3.13.8 [Forcestep|, page 39). I generally put this in my start-up
file .rdebugrc.

14 ruby-debug

Similar to the difference between step+ and step is set linetrace+. This removes
duplicate consecutive line tracing.

One last thing to note above is the use of a method name to set a breakpoint position,
rather than a file and line number. Because method gcd is in the outermost scope, we use
Object as the class name.

1.5.3 Bouncing Around in Blocks (e.g. Iterators)

When debugging languages with coroutines like Python and Ruby, a method call may not
necessarily go to the first statement after the method header. It’s possible the call will
continue after a yield statement from a prior call.

1 #!/usr/bin/env ruby

2 # Enumerator for primes

3 class SievePrime

4 @Qodd_primes = []

5 def self.next_prime(&block)
6 candidate = 2

7 yield candidate

8 not_prime = false

9 candidate += 1

10 while true do

11 @Qodd_primes.each do |pl

12 not_prime = (0 == (candidate % p))
13 break if not_prime

14 end

15 unless not_prime

16 @Q@odd_primes << candidate
17 yield candidate

18 end

19 candidate += 2

20 end

21 end

22 end

23 SievePrime.next_prime do |primel
24 puts prime

256 break if prime > 10

26 end

$ rdebug primes.rb

primes.rb:3

class SievePrime

(rdb:1) set linetrace on

line tracing is on.

(rdb:1) step 10

Tracing(1) :primes.rb:4 Q@odd_primes = []

Tracing(1) :primes.rb:5 def self.next_prime(&block)
Tracing(1) :primes.rb:23 SievePrime.next_prime do |prime
Tracing(1) :primes.rb:6 candidate = 2

Tracing(1) :primes.rb:7 yield candidate

Tracing(1) :primes.rb:24 puts prime

2

Tracing(1) :primes.rb:25 break if prime > 10
Tracing(1) :primes.rb:25 break if prime > 10
Tracing(1) :primes.rb:8 not_prime = false
Tracing(1) :primes.rb:9 candidate += 1

primes.rb:9

candidate += 1

Chapter 1: Summary of ruby-debug 15

(rdb:1)

The loop between lines 23-26 gets interleaved between those of Sieve: :next_prime,
lines 6-19 above.

A similar kind of thing can occur in debugging programs with many threads.

1.5.4 No Parameter Values in a Call Stack

In traditional debuggers in a call stack you can generally see the names of the parameters
and the values that were passed in.

Ruby is a very dynamic language and it tries to be efficient within the confines of
the language definition. Values generally aren’t taken out of a variable or expression and
pushed onto a stack. Instead a new scope created and the parameters are given initial
values. Parameter passing is by reference, not by value as it is say Algol, C, or Perl. During
the execution of a method, parameter values can change—and often do. In fact even the
class of the object can change.

So at present, the name of the parameter shown. The call-style setting see Section 3.13.7
[Callstyle], page 39 can be used to set whether the name is shown or the name and the
current class of the object.

It has been contemplated that a style might be added which saves on call shorter “scalar”
types of values and the class name.

1.5.5 Lines You Can Stop At

As with the duplicate stops per control (e.g. if statement), until tools like debuggers get
more traction among core ruby developers there are going to be weirdness. Here we describe
the stopping locations which effects the breakpoint line numbers you can stop at.

Consider the following little Ruby program.

'Yes it does' =" /
(Yes) \s+

it \s+

does

/ix

puts $1

The stopping points that Ruby records are the last two lines, lines 5 and 6. If you run
ruby -rtracer on this file you’ll see that this is so:

$ ruby -rtracer lines.rb
#0:1lines.rb:5::-: /ix
#0:lines.rb:6::-: puts $1
#0:1lines.rb:6:Kernel:>: puts $1
#0:1lines.rb:6:I0:>: puts $1
Yes#0:1lines.rb:6:I10:<: puts $1
#0:1lines.rb:6:I0:>: puts $1

#0:1lines.rb:6:10:<: puts $1
#0:lines.rb:6:Kernel:<: puts $1

Inside ruby-debug you an get a list of stoppable lines for a file using the info file
command with the attribute breakpoints.

Chapter 2: Getting in and out 17

2 Getting in and out

It is also possible to enter the debugger when you have an uncaught exception. See See also
Chapter 4 [Post-Mortem Debugging], page 43.

2.1 Starting the debugger

Although one can enter ruby-debug via Emacs (described in a later section) and possibly
others interfaces, probably the most familiar thing to do is invoke the debugger from a
command line.

A wrapper shell script called rdebug basically require’s the gem package ruby-debug
and then loads rdebug.

rdebug [rdebug-options] [--] ruby-script ruby-script-arguments...

If you don’t need to pass dash options to your program which might get confused with
the debugger options, then you don’t need to add the ‘--".

To get a brief list of options and descriptions, use the —-help option.

$ rdebug —help
rdebug 0.10.4

Usage: rdebug [options] <script.rb> -- <script.rb parameters>
Options:

-A, --annotate LEVEL Set annotation level

-c, --client Connect to remote debugger
--cport PORT Port used for control commands

-d, --debug Set $DEBUG=true
--emacs Activates full Emacs support
--emacs-basic Activates basic Emacs mode

-h, --host HOST Host name used for remote debugging

-I, --include PATH Add PATH to $LOAD_PATH
--keep-frame-binding Keep frame bindings

-m, --post-mortem Activate post-mortem mode
--no-control Do not automatically start control thread
--no-quit Do not quit when script finishes
--no-rewrite-program Do not set $0 to the program being debugged
--no-stop Do not stop when script is loaded

-p, ——port PORT Port used for remote debugging

-r, --require SCRIPT Require the library, before executing your script
--script FILE Name of the script file to run

-s, —-server Listen for remote connections

-w, --wait Wait for a client connection, implies -s option

-x, ——trace Turn on line tracing

Common options:

--verbose Turn on verbose mode
--help Show this message
--version Print the version
-v Print version number, then turn on verbose mode

Options for the rdebug are shown in the following list.

2.1.1 Options you can pass to rdebug

You can run ruby-debug in various alternative modes—for example, as a program that
interacts directly with the program in the same process on the same computer or via a
socket to another process possibly on a different computer.

18 ruby-debug

Many options appear as a long option name, such as ‘--help’, and a short one letter

option name, such as ‘-h’. A double dash (‘--’ is used to separate options which go to
rdebug from options that are intended to go to your Ruby script. Options (if any) to
rdebug should come first. If there is no possibility of the Ruby script to be debugged
getting confused with rdebug’s option the double dash can be omitted.

--help This option causes rdebug to print some basic help and exit.

-v | --version
This option causes rdebug to print its version number and exit.

-A | -—annotate level
Set gdb-style annotation level, a number. Additional information is output
automatically when program state is changed. This can be used by front-ends
such as GNU Emacs to post this updated information without having to poll
for it.

-c | --client
Connect to remote debugger. The remote debugger should have been set up
previously our you will get a connection error and rdebug will terminate.

--cport port
Port used for control commands.

--debug Set $DEBUG to true. This option is compatible with Ruby’s.

—-—emacs Activates GNU Emacs mode. Debugger output is tagged in such a way to allow
GNU Emacs to track where you are in the code.

—-—-emacs-basic
Activates full GNU Emacs mode. This is the equivalent of setting the
options ‘--emacs-basic’, annotate=3, ‘--no-stop’, ‘-no-control’ and
‘~-—post-mortem’.

¢

-h | --host host-address
Connect host address for remote debugging.

-I ——include PATH
Add PATH to $LOAD_PATH

—--keep-frame-binding
Bindings are used to set the proper environment in evaluating expression inside
the debugger. Under normal circumstances, I don’t believe most people will
ever need this option.

By default, the debugger doesn’t create binding object for each frame when
the frame is created, i.e. when a call is performed. Creating a binding is an
expensive operation and has been a major source of performance problems.

Instead, the debugger creates a binding when there is a need to evaluate ex-
pressions. The artificial binding that is created might be different from the real
one. In particular, in performing constant and module name resolution.
However it’s still possible to restore the old, slower behavior by using this
option or by setting Debugger.keep_frame_binding = true. There are two
possibilities for which you might want to use this option.

Chapter 2: Getting in and out 19

First, if you think there’s a bug in the evaluation of variables, you might want
to set this to see if this corrects things.

Second, since the internal structures that are used here FRAME and SCOPE are
not part of the Ruby specification, it is possible they can change with newer
releases; so here this option this may offer a remedy. (But you’ll probably also
have to hack the C code since it’s likely under this scenario that ruby-debug
will no longer compile.) In fact, in Ruby 1.9 these structures have changed and
that is partly why this debugger doesn’t work on Ruby 1.9.

-m | --post-mortem
If your program raises an exception that isn’t caught you can enter the debugger
for inspection of what went wrong. You may also want to use this option in
conjunction with ‘--no-stop’. See also Chapter 4 [Post-Mortem Debugging],
page 43.

--no-control
Do not automatically start control thread.

--no-quit
Restart the debugger when your program terminates normally.

--no-rewrite-program
Normally rdebug will reset the program name $0 from its name to the debugged
program, and set the its name in variable $RDEBUG_O. In the unlikely even you
don’t want this use this option.

--no-stop
Normally the rdebug stops before executing the first statement. If instead you
want it to start running initially and will perhaps break it later in the running,
use this options.

-p | —-port port
Port used for remote debugging.

-r | --require library
Require the library, before executing your script. However if the library hap-
pened to be debug, we’ll just ignore the require (since we’re already a debugger).
This option is compatible with Ruby’s.

--script file
Require the library, before executing your script. However if the library hap-
pend to be debug, we’ll just ignore the require (since we’re already a debugger).
This option is compatible with Ruby’s.

-s | -—server
Debug the program but listen for remote connections on the default port or
port set up via the ‘-—port’ option. See also ‘--wait’.

-w | —-wait
Debug the program but stop waiting for a client connection first. This option
automatically sets ‘--server’ option.

20 ruby-debug

-x | ——trace
Turn on line tracing. Running rdebug --trace rubyscript.rb is much like
running: ruby -rtracer rubyscript.rb

If all you want to do however is get a linetrace, tracer, not rdebug, may be
faster:

$ time ruby -rtracer gcd.rb 34 21 > /dev/null

real OmO.266s
user Om0.008s
sys Om0.000s
$ time rdebug —trace ged.rb 34 21 > /dev/null

real Om0.875s
user Om0.448s
sys Om0.056s
$

2.1.2 How to Set Default Command-Line Options

ruby-debug has many command-line options; it seems that some people want to set
them differently from the our defaults. For example, some people may want ‘-—-no-quit
--no-control’ to be the default behavior. One could write a wrapper script or set a shell
alias to handle this. ruby-debug has another way to do this as well. Before processing
command options if the file $HOME/ . rdboptrc is found it is loaded. If you want to set the
defaults in some other way, you can put Ruby code here and set variable options which
is an OpenStruct. For example here’s how you'd set ‘-no-quit’ and change the default
control port to 5000.

This file contains how you want the default options to ruby-debug

to be set. Any Ruby code can be put here.

#

debugger # Uncomment if you want to debug rdebug!

options.control = false

options.port = 5000
puts "rocky's rdboptrc run"

Here are the default values in options

#<0penStruct server=false, client=false, frame_bind=false, cport=8990, tracing=false, nx=false, post_mort

2.2 Command files

A command file for ruby-debug is a file of lines that are ruby-debug commands. Comments
(lines starting with #) may also be included. An empty line in a command file does nothing;
it does not mean to repeat the last command, as it would from the terminal.

When you start ruby-debug, it automatically executes commands from its init files,
normally called ‘.rdebugrc’.

On some configurations of ruby-debug, the init file may be known by a different name.
In particular on MS-Windows (but not cygwin) ‘rdebug.ini’ is used.

During startup, ruby-debug does the following:

1. Processes command line options and operands.

Chapter 2: Getting in and out 21

2. Reads the init file in your current directory, if any, and failing that the home directory.
The home directory is the directory named in the HOME or HOMEPATH environment
variable.

Thus, you can have more than one init file, one generic in your home directory, and
another, specific to the program you are debugging, in the directory where you invoke
ruby-debug.

3. Reads command files specified by the ‘--script’ option.

You can also request the execution of a command file with the source command, see
Section 3.5.4 [Source], page 26.

2.3 Quitting the debugger

An interrupt (often C-c) does not exit from ruby-debug, but rather terminates the action
of any ruby-debugcommand that is in progress and returns to ruby-debug command level.
Inside a debugger command interpreter, use quit command (see Section 3.5 [Quitting the
debugger], page 25).

There way to terminate the debugger is to use the kill command. This does more
forceful ki1l -9. It can be used in cases where quit doesn’t work.

2.4 Calling the debugger from inside your Ruby program

Running a program from the debugger adds a bit of overhead and slows down your program
a little.

Furthermore, by necessity, debuggers change the operation of the program they are
debugging. And this can lead to unexpected and unwanted differences. It has happened
so often that the term “Heisenbugs” (see http://en.wikipedia.org/wiki/Heisenbug)
was coined to describe the situation where the addition of the use of a debugger (among
other possibilities) changes behavior of the program so that the bug doesn’t manifest itself
anymore.

There is another way to get into the debugger which adds no overhead or slowdown until
you reach the point at which you want to start debugging. However here you must change
the script and make an explicit call to the debugger. Because the debugger isn’t involved
before the first call, there is no overhead and the script will run at the same speed as if
there were no debugger.

There are three parts to calling the debugger from inside the script, “requiring” the
debugger code, telling the debugger to start tracking things and then making the call calling
the debugger to stop.

To get the debugger class accessible from your Ruby program:

require 'rubygems'
require 'ruby-debug'

(It is very likely that you've already require’d rubygems. If so, you don’t have to do that
again.) These commands need to be done only once.

After require 'ruby-debug', it’s possible to set some of the debugger variables in-
fluence preferences. For example if you want to have rdebugrun a list command every
time it stops you set the variable Debugger.settings[:autolist]. see Section 5.1.3 [De-
bugger.settings|, page 46 has a list of variable settings and the default values. Debugger

http://en.wikipedia.org/wiki/Heisenbug

22 ruby-debug

settings can also be set in .rdebugrc as debugger commands. see Section 2.2 [Command
Files], page 20

To tell the debugger to start tracking things:
Debugger.start

There is also a Debugger . stop to turn off debugger tracking. If speed is crucial, you may
want to start and stop this around certain sections of code. Alternatively, instead of issuing
an explicit Debugger.stop you can add a block to the Debugger.start and debugging is
turned on for that block. If the block of code raises an uncaught exception that would cause
the block to terminate, the stop will occur. See Section 1.4 [Debugger.start with a block]
page 10.

)

And finally to enter the debugger:
debugger

As indicated above, when debugger is run a .rdebugrc profile is read if that file exists.

You may want to do enter the debugger at several points in the program where there is
a problem you want to investigate. And since debugger is just a method call it’s possible
enclose it in a conditional expression, for example:

debugger if 'bar' == foo and 20 == iter_count

Although each step does a very specific thing which offers great flexibility, in order to
make getting into the debugger easier the three steps have been rolled into one command:
require "ruby-debug/debugger"

Chapter 3: ruby-debug Command Reference 23

3 ruby-debug Command Reference

3.1 Command Interfaces

There are several ways one can talk to ruby-debug and get results. The simplest way is
via a command-line interface directly talking to the debugger. This is referred to below
as a “Local Interface”. It’s also possible to run the debugger and set up a port by which
some other process can connect and control the debug session. This is called a “Remote
Interface”. When you want to gain access to a remote interface you need to run ruby-debug
using a “Control Interface”. This interface might not be the same process as the process
running the debugged program and might not even be running on the same computer.

Other front-ends may use one of these and build on top and provide other (richer)
interfaces. Although many of the commands are available on all interfaces some are not.
Most of the time in this manual when we talk about issuing commands describing the
responses elicited, we’ll assume we are working with the local interface.

3.2 Command Syntax

Usually a command is put on a single line. There is no limit on how long it can be. It
starts with a command name, which is followed by arguments whose meaning depends
on the command name. For example, the command step accepts an argument which is
the number of times to step, as in step 5. You can also use the step command with no
arguments. Some commands do not allow any arguments.

Multiple commands can be put on a line by separating each with a semicolon (;). You can
disable the meaning of a semicolon to separate commands by escaping it with a backslash.

For example, if you have autoeval (Section 3.13.2 [Autoeval], page 38) set, you might
want to enter the following code to compute the 5th Fibonacci number:

Compute the 5 Fibonaci number

(rdb:1) set autoeval on

(rdb:1) fib1=0; fib2=1; 5.times {|temp| temp=fibl; fibl=fib2; fib2 += temp }
SyntaxError Exception: compile error

/usr/bin/irb:10: syntax error, unexpected $end, expecting '}'

5.times {|temp| temp=£fibi

(rdb:1) fib1=0\; fib2=1\; 5.times {|temp| temp=fibl\; fibl=fib2\; fib2 += temp }
5
(rdb:1) fib2
£ib2
8
You might also consider using the irb command, Section 3.7.3 [irb], page 28, and then

you won’t have to escape semicolons.
A blank line as input (typing just <RET>) means to repeat the previous command.

In the “local” interface, the Ruby Readline module is used. It handles line editing and
retrieval of previous commands. Up arrow, for example moves to the previous debugger
command; down arrow moves to the next more recent command (provided you are not
already at the last command). Command history is saved in file .rdebug_hist. A limit
is put on the history size. You can see this with the show history size command. See
Section 3.13.10 [History], page 40 for history parameters.

24 ruby-debug

3.3 Command Output

In the command-line interface, when ruby-debug is waiting for input it presents a prompt
of the form (rdb:z). If debugging locally, x will be the thread number. Usual the main
thread is 1, so often you’ll see (rdb:1). In the control interface though z will be ctrl and
in post-mortem debugging post-mortem.

In the local interface, whenever ruby-debug gives an error message such as for an invalid
command, or an invalid location position, it will generally preface the message with **x.
However if annotation mode is on that the message is put in a begin-error annotation
and no *** appears.

3.4 Getting help (‘help’)

Once inside ruby-debug you can always ask it for information on its commands, using the
command help.

help
h You can use help (abbreviated h) with no arguments to display a short list of
named classes of commands:

(rdb:1) help
ruby-debug help v0.10.4
Type 'help <command-name>' for help on a specific command

Available commands:

backtrace delete enable help next quit show undisplay
break disable eval info P reload source up

catch display exit irb PP restart step var
condition down finish 1list ps save thread where
continue edit frame method putl set trace

help command
With a command name as help argument, ruby-debugdisplays short informa-
tion on how to use that command.

(rdb:1) help list

ruby-debug help v0.10.4

1[ist] 1list forward

1[ist] - list backward

1[ist] = list current line

1[ist] nn-mm list given lines

* NOTE - to turn on autolist, use 'set autolist'
(rdb:1)

3.4.1 Help on Subcommands

A number of commands have many sub-parameters or subcommands. These include info,
set, show, enable and disable.

When you ask for help for one of these commands, you will get help for all of the
subcommands that that command offers. Sometimes you may want help that subcommand
and to do this just follow the command with its subcommand name. For example help set
annotate will just give help about the annotate command. Furthermore it will give longer
help than the summary information that appears when you ask for help. You don’t need to
list the full subcommand name, but just enough of the letters to make that subcommand
distinct from others will do. For example, help set an is the same as help set annotate.

Chapter 3: ruby-debug Command Reference 25

Some examples follow.

(rdb:

1) help info

Generic command for showing things about the program being debugged.

List
info
info
info
info
info
info
info
info
info
info
info
info
info
info
info

(rdb:

of info subcommands:

args -- Argument variables of current stack frame

breakpoints -- Status of user-settable breakpoints

catch -- Exceptions that can be caught in the current stack frame
display -- Expressions to display when program stops

file —- Info about a particular file read in

files -- File names and timestamps of files read in
global_variables -- Global variables

instance_variables -- Instance variables of the current stack frame
line -- Line number and file name of current position in source file
locals -- Local variables of the current stack frame

program —-- Execution status of the program

stack -- Backtrace of the stack

thread -- List info about thread NUM

threads -- information of currently-known threads
variables —-- Local and instance variables of the current stack frame
1) help info breakpoints

Status of user-settable breakpoints.
Without argument, list info about all breakpoints. With an
integer argument, list info on that breakpoint.

(rdb:

1) help info br

Status of user-settable breakpoints.
Without argument, list info about all breakpoints. With an
integer argument, list info on that breakpoint.

3.5 Controlling the debugger (‘quit’, ‘restart’, ‘interrupt’,
‘source’)

3.5.1 Quit (‘quit’)

quit [unconditionally]

exit
q

To exit ruby-debug, use the quit command (abbreviated q), or alias exit.
A simple quit tries to terminate all threads in effect.

Normally if you are in an interactive session, this command will prompt to ask
if you really want to quit. If you don’t want any questions asked, enter the
“unconditionally”.

26 ruby-debug

3.5.2 Restart (‘restart’)

restart
R

Restart the program. This is is a re-exec - all debugger state is lost. If command
arguments are passed those are used. Otherwise the last program arguments
used in the last invocation are used.

In not all cases will you be able to restart the program. First, the program
should have been invoked at the outset rather than having been called from
inside your program or invoked as a result of post-mortem handling.

Also, since this relies on the the OS exec call, this command is available only
if your OS supports that exec; OSX for example does not (yet).

3.5.3 Interrupt (‘interrupt’)

interrupt
i Interrupt the program. Useful if there are multiple threads running.

3.5.4 Running Debugger Commands (‘source’)

source filename
Execute the command file filename.

The lines in a command file are executed sequentially. They are not printed as
they are executed. If there is an error, execution proceeds to the next command
in the file. For information about command files that get run automatically on
startup, see Section 2.2 [Command Files|, page 20.

3.6 Executing expressions on stop (‘display’, ‘undisplay’)

If you find that you want to print the value of an expression frequently (to see how it
changes), you might want to add it to the automatic display list so that ruby-debug evaluates
a statement each time your program stops or the statement is shown in line tracing. Each
expression added to the list is given a number to identify it; to remove an expression from
the list, you specify that number. The automatic display looks like this:
(rdb:1) display n
1: n=3
This display shows item numbers, expressions and their current values. If the expression is
undefined or illegal the expression will be printed but no value will appear.
(rdb:1) display undefined_variable
2: undefined_variable =
(rdb:1) display 1/0
3: 1/0 =
Note: this command uses to_s to in expressions; for example an array [1, 2] will appear
as 12. For some datatypes like an Array, you may want to call the inspect method, for
example display ARGV.inspect rather than display ARGV.
display expr
Add the expression expr to the list of expressions to display each time your
program stops or a line is printed when linetracing is on (see Section 3.6 [Dis-
playCommands|, page 26).

Chapter 3: ruby-debug Command Reference 27

display Display the current values of the expressions on the list, just as is done when
your program stops.

undisplay [num)|
delete display num
Remove item number num from the list of expressions to display.

info display
Show all display expressions

disable display dnums...
Disable the display of item numbers dnums. A disabled display item is not
printed automatically, but is not forgotten. It may be enabled again later.

enable display dnums. ..
Enable display of item numbers dnums. It becomes effective once again in auto
display of its expression, until you specify otherwise.

3.7 Evaluating and Printing Expressions (‘p’, ‘pp’, ‘putl’,

‘pS,, Cirb’)
One way to examine and change data in your script is with the eval command (abbreviated
p). A similar command is pp which tries to pretty print the result. Finally irb is useful

when you anticipate examining or changing a number of things, and prefer not to have to
preface each command, but rather work as one does in irb.

3.7.1 Printing an expression (‘eval’, ‘p’)

eval expr
p expr
Use eval or p to evaluate a Ruby expression, expr, same as you would if you
were in irb. If there are many expressions you want to look at, you may want
to go into irb from the debugger.
(rdb:p) pn
3
(rdb:1) p "the value of n is #{n}"

"the value of n is 3"
(rdb:1)

3.7.2 Pretty-Printing an expression (‘pp’, ‘putl’, ‘ps’))

PP Evaluates and pretty-prints expr

(rdb:1) p $SLOAD_PATH
["/home/rocky/lib/ruby", "/usr/lib/ruby/site_ruby/1.8", "/usr/lib/ruby/site_ruby/1.8/i586-1ir
(zdb:1) pp $SLOAD_PATH
["/home/rocky/lib/ruby",
"/usr/lib/ruby/site_ruby/1.8",
"/usr/lib/ruby/site_ruby/1.8/i586-1linux",
"/usr/lib/ruby/1.8"]

putl If the value you want to print is an array, sometimes a columnized list looks
nicer:

28

ps

ruby-debug

(rdb:1) putl SLOAD_PATH

/home/rocky/1lib/ruby /usr/lib/ruby/site_ruby/1.8

/usr/lib/ruby/site_ruby/1.8/i586-1linux /usr/lib/ruby/1.8
Note however that entries are sorted to run down first rather than across. So
in the example above the second entry in the list is /usr/1ib/ruby/site_
ruby/1.8/i586-1inux and the third entry is /usr/1ib/ruby/site_ruby/1.8.

If the value is not an array putl will just call pretty-print.

Sometimes you may want to print the array not only columnized, but sorted
as well. The list of debugger help commands appears this way, and so does the
output of the method commands.

(rdb:1) ps Kernel.private_methods

Digest initialize y
Pathname initialize_copy

Rational location_of_caller
active_gem_with_options method_added

alias_method method_removed
append_features method_undefined

attr module_function
attr_accessor private

attr_reader protected

attr_writer public

class_variable_get remove_class_variable
class_variable_set remove_const

define_method remove_instance_variable
extend_object remove_method

extended singleton_method_added

gecd singleton_method_removed
gem_original_require singleton_method_undefined
include timeout

included undef_method

If the value is not an array, ps will just call pretty-print. See also the methods.

3.7.3 Run irb (‘irb’)

irb

Run an interactive ruby session (irb) with the bindings environment set to the
state you are in the program.

When you leave irb and go back to the debugger command prompt we show
again the file, line and text position of the program in the same way as when
entered the debugger. If you issue a 1list without location information, the
default location used is the current line rather than the position may have
gotten updated via a prior 1ist command.

triangle.rb:4

def triangle(n)

(rdb:1) list

[-1, 8] in /home/rocky/ruby/triangle.rb
1 #!/usr/bin/env ruby

2 # Compute the n'th triangle number - the hard way
3 # triangle(n) == (n * (n+1)) / 2

4 def triangle(n)

5 tri = 0

6 0.upto(n) do [il

7 tri += 1

8 end

Chapter 3: ruby-debug Command Reference 29

irb
>> (0..6).inject{ |sum, i| sum +=i}
=> 21
>> exit
triangle.rb:4
def triangle(n)
(rdb:1) list # Note we get the same line range as before going into irb
[-1, 8] in /home/rocky/ruby/triangle.rb
#!/usr/bin/env ruby
Compute the n'th triangle number - the hard way
triangle(n) == (n * (n+1)) / 2
def triangle(n)

tri =0

0.upto(n) do [il

tri += i
end

0 ~NO O WwN -

3.8 Printing Variables (‘var’, ‘method’)

var const object

Show the constants of object. This is basically listing variables and their values
in object.constant.

var instance object

Show the instance variables of object. This is basically listing object.instance_
variables.

info instance_variables
Show instance_variables of @self

info locals
Show local variables

info globals
Show global variables

info variables
Show local and instance variables of @self

method instance object
Show methods of object. Basically this is the same as running ps
object.instance_methods(false) on object.

method iv object
Show method instance variables of object. Basically this is the same as running

obj.instance_variables.each do |v|
puts "%s = %s\n" % [v, obj.instance_variable_get(v)]
end

on object.

signature object
Show procedure signature of method object. This command is available only if
the nodewrap is installed.

def mymethod(a, b=5, &bock)
end

30 ruby-debug

(rdb:1) method sig mymethod
Mine#mymethod(a, b=5, &bock)

on object.

method class-or-module
Show methods of the class or module, class-or-module. Basically this is the
same as running ps object.methods on class-or-module. on class-or-module.

3.9 Examining Program Source Files (‘list’)

ruby-debug can print parts of your script’s source. When your script stops, ruby-debug
spontaneously prints the line where it stopped and the text of that line. Likewise, when
you select a stack frame (see Section 3.11.3 [Selection|, page 32) ruby-debug prints the line
where execution in that frame has stopped. Implicitly there is a default line location. Each
time a list command is run that implicit location is updated, so that running several list

commands in succession shows a contiguous block of program text.

You can print other portions of source files by giving an explicit position as a parameter
to the list command.

If you use ruby-debug through its Emacs interface, you may prefer to use Emacs facilities
to view source.

To print lines from a source file, use the 1list command (abbreviated 1). By default,
ten lines are printed. Fewer may appear if there fewer lines before or after the current line
to center the listing around.

There are several ways to specify what part of the file you want to print. Here are the
forms of the 1ist command.

list line—-number
1 line—-number
Print lines centered around line number line-number in the current source file.

list

1 Print more lines. If the last lines printed were printed with a 1ist command,
this prints lines following the last lines printed; however, if the last line printed
was a solitary line printed as part of displaying a stack frame (see Section 3.11.1
[Frames|, page 32), this prints lines centered around that line.

list -

1- Print lines just before the lines last printed.

list first-last
Print lines between first and last inclusive.

list = Print lines centered around where the script is stopped.

Repeating a 1ist command with RET discards the argument, so it is equivalent to typing
just 1ist. This is more useful than listing the same lines again. An exception is made for
an argument of ‘-’; that argument is preserved in repetition so that each repetition moves
up in the source file.

Chapter 3: ruby-debug Command Reference 31

3.10 Editing Source files (‘edit’)

To edit the lines in a source file, use the edit command. The editing program of your
choice is invoked with the current line set to the active line in the program. Alternatively,
you can give a line specification to specify what part of the file you want to print if you
want to see other parts of the program.

You can customize to use any editor you want by using the EDITOR environment variable.
The only restriction is that your editor (say ex), recognizes the following command-line
syntax:

ex +number file

The optional numeric value +number specifies the number of the line in the file where
to start editing. For example, to configure ruby-debug to use the vi editor, you could use
these commands with the sh shell:

EDITOR=/usr/bin/vi

export EDITOR
gdb ...

or in the csh shell,

setenv EDITOR /usr/bin/vi
gdb ...

edit [line specification]
Edit line specification using the editor specified by the EDITOR environment
variable.

3.11 Examining the Stack Frame (‘where’, ‘up’, ‘down’,
‘frame’)

When your script has stopped, one thing you’ll probably want to know is where it stopped
and some idea of how it got there.

Each time your script performs a function or sends a message to a method, or enters a
block, information about this action is saved. The frame stack then is this a history of the
blocks that got you to the point that you are currently stopped at.!

One entry in call stack is selected by ruby-debug and many ruby-debugcommands re-
fer implicitly to the selected block. In particular, whenever you ask ruby-debugto list
lines without giving a line number or location the value is found in the selected frame.
There are special ruby-debugcommands to select whichever frame you are interested in.
See Section 3.11.3 [Selecting a frame|, page 32.

When your program stops, ruby-debug automatically selects the currently executing
frame and describes it briefly, similar to the frame command.

After switching frames, when you issue a 1ist command without any position informa-
tion, the position used is location in the frame that you just switched between, rather than
a location that got updated via a prior 1ist command.

1 More accurately we should call this a “block stack”; but we’ll use the name that is more commonly used.
And internally in Ruby, there is “FRAME” structure which is yet slightly different.

32 ruby-debug

3.11.1 Stack frames

The block stack is divided up into contiguous pieces called stack frames, frames, or blocks
for short; each frame/block has a scope associated with it; It contains a line number and
the source-file name that the line refers. If the frame/block is the beginning of a method or
function it also contains the function name.

When your script is started, the stack has only one frame, that of the function main.
This is called the initial frame or the outermost frame. Each time a function is called, a
new frame is made. Each time a function returns, the frame for that function invocation
is eliminated. If a function is recursive, there can be many frames for the same function.
The frame for the function in which execution is actually occurring is called the innermost
frame. This is the most recently created of all the stack frames that still exist.

ruby-debug assigns numbers to all existing stack frames, starting with zero for the in-
nermost frame, one for the frame that called it, and so on upward. These numbers do not
really exist in your script; they are assigned by ruby-debug to give you a way of designating
stack frames in ruby-debug commands.

3.11.2 Backtraces (‘where’)

A backtrace is essentially the same as the call stack: a summary of how your script got
where it is. It shows one line per frame, for many frames, starting with the place that you
are stopped at (frame zero), followed by its caller (frame one), and on up the stack.

where Print the entire stack frame; info stack is an alias for this command. Each
frame is numbered and can be referred to in the frame command; up and down
add or subtract respectively to frame numbers shown. The position of the
current frame is marked with —->.

(rdb:1) where
--> #0 Object.gcd(a#Fixnum, b#Fixnum) at line /tmp/gcd.rb:6
#1 at line /tmp/gcd.rb:19

3.11.3 Selecting a frame (‘up’, ‘down’, ‘frame’)

Commands for listing source code in your script work on whichever stack frame is selected
at the moment. Here are the commands for selecting a stack frame; all of them finish by
printing a brief description of the stack frame just selected.

up [n] Move n frames up the stack. For positive numbers n, this advances toward the
outermost frame, to higher frame numbers, to frames that have existed longer.
Using a negative n is the same thing as issuing a down command of the absolute
value of the n. Using zero for n does no frame adjustment, but since the current
position is redisplayed, it may trigger a resynchronization if there is a front end
also watching over things.

n defaults to one. You may abbreviate up as u.

down [n] Move n frames down the stack. For positive numbers n, this advances toward
the innermost frame, to lower frame numbers, to frames that were created more
recently. Using a negative n is the same as issuing a up command of the absolute
value of the n. Using zero for n does no frame adjustment, but since the current
position is redisplayed, it may trigger a resynchronization if there is a front end
also watching over things.

Chapter 3: ruby-debug Command Reference 33

n defaults to one.

frame [n] [thread thread-num|
The frame command allows you to move from one stack frame to another, and
to print the stack frame you select. n is the the stack frame number or 0 if no
frame number is given; frame O then will always show the current and most
recent stack frame.

If a negative number is given, counting is from the other end of the stack frame,
so frame -1 shows the least-recent, outermost or most “main” stack frame.

Without an argument, frame prints the current stack frame. Since the current
position is redisplayed, it may trigger a resynchronization if there is a front end
also watching over things.

If a thread number is given then we set the context for evaluating expressions
to that frame of that thread.

3.12 Stopping and Resuming Execution

One important use of a debugger is to stop your program before it terminates, so that if your
script runs into trouble you can investigate and find out why. However should your script
accidentally continue to termination, it can be arranged for ruby-debugto not to leave the
debugger without your explicit instruction. That way, you can restart the program using
the same command arguments.

Inside ruby-debug, your script may stop for any of several reasons, such as a signal, a
breakpoint, or reaching a new line after a debugger command such as step. You may then
examine and change variables, set new breakpoints or remove old ones, and then continue
execution.

3.12.1 Breakpoints (‘break’, ‘catch’, ‘delete’)

A breakpoint makes your script stop whenever a certain point in the program is reached.
For each breakpoint, you can add conditions to control in finer detail whether your script
stops.

You specify the place where your script should stop with the break command and its
variants.

ruby-debug assigns a number to each breakpoint when you create it; these numbers
are successive integers starting with one. In many of the commands for controlling various
features of breakpoints you use the breakpoint number to say which breakpoint you want
to change. Each breakpoint may be enabled or disabled; if disabled, it has no effect on your
script until you enable it again.

break Set a breakpoint at the current line.

break linenum
Set a breakpoint at line linenum in the current source file. The current source
file is the last file whose source text was printed. The breakpoint will stop your
script just before it executes any of the code on that line.

break filename :linenum
Set a breakpoint at line linenum in source file filename.

34 ruby-debug

What may be a little tricky when specifying the filename is getting the name
recognized by the debugger. If you get a message the message “No source file
named ...”, then you may need to qualify the name more fully. To see what
files are loaded you can use the info files or info file commands. If you
want the name rdebug thinks of as the current file, use info line.

Here’s an example:

$ rdebug ~/ruby/gcd.rb 3 5
/home/rocky/ruby/gcd.rb:4 # Note this is the file name
def gcd(a, b)
(rdb:1) break gcd.rb:6
***x No source file named gcd.rb
(rdb:1) info line
Line 4 of "/home/rocky/ruby/gcd.rb"
(rdb:1) break /home/rocky/ruby/gcd.rb:6
Breakpoint 1 file /home/rocky/ruby/gcd.rb, line 6
(rdb:1) break ~/ruby/gcd.rb:10 # tilde expansion also works
Breakpoint 2 file /home/rocky/ruby/gcd.rb, line 10
(rdb:1) info file gcd.rb
File gcd.rb is not cached
(rdb:1) info file /home/rocky/ruby/gecd.rb
File /home/rocky/ruby/gcd.rb
19 lines

break class:method
Set a breakpoint in class class method method. You can also use a period .
instead of a colon :. Note that two colons :: are not used. Also note a class
must be specified here. If the method you want to stop in is in the main class
(i.e. the class that self belongs to at the start of the program), then use the
name Object.

catch [exception] [on | 1 | off | O]
Set catchpoint to an exception. Without an exception name show catchpoints.

With an “on” or “off” parameter, turn handling the exception on or off. To
delete all exceptions type “catch off”.

delete [breakpoints]|
Delete the breakpoints specified as arguments.

If no argument is specified, delete all breakpoints (ruby-debugasks confirmation.
You can abbreviate this command as del.

info breakpoints [n]

info break [n]
Print a table of all breakpoints set and not deleted, with the following columns
for each breakpoint:

Breakpoint Numbers (‘Num’)

Enabled or Disabled (‘Enb’)
Enabled breakpoints are marked with ‘1’. ‘0’ marks breakpoints
that are disabled (not enabled).

Chapter 3: ruby-debug Command Reference 35

File and Line (‘file:line’)
The filename and line number inside that file where of breakpoint
in the script. The file and line are separated with a colon.

Condition A condition (an arithmetic expression) which when true causes the
breakpoint to take effect.

If a breakpoint is conditional, info break shows the condition on the line fol-
lowing the affected breakpoint; breakpoint commands, if any, are listed after
that.

info break with a breakpoint number n as argument lists only that breakpoint.
Examples:

(rdb:1) info break

Breakpoints at following places:
Num Enb What

1 y gcd.rb:3

2 y gcb.rb:28 if n > 1
(rdb:1) info break 2

2 y gcb.rb:28 if n > 1

3.12.2 Disabling breakpoints (‘disable’, ‘enable’)

Rather than deleting a breakpoint, you might prefer to disable it. This makes the breakpoint
inoperative as if it had been deleted, but remembers the information on the breakpoint so
that you can enable it again later.

You disable and enable breakpoints and catchpoints with the enable and disable com-
mands, optionally specifying one or more breakpoint numbers as arguments. Use info
break to print a list of breakpoints and catchpoints if you do not know which numbers to
use.

A breakpoint or catchpoint can have any different states of enablement:

e Enabled. The breakpoint stops your program. A breakpoint set with the break com-
mand starts out in this state.

e Disabled. The breakpoint has no effect on your program.
You can use the following commands to enable or disable breakpoints and catchpoints:

disable breakpoints
Disable the specified breakpoints—or all breakpoints, if none are listed. A
disabled breakpoint has no effect but is not forgotten. All options such as
ignore-counts, conditions and commands are remembered in case the breakpoint
is enabled again later. You may abbreviate disable as dis.

enable breakpoints
Enable the specified breakpoints (or all defined breakpoints). They become
effective once again in stopping your program.

Breakpoints that you set are initially enabled; subsequently, they become disabled or
enabled only when you use one of the commands above. (The command until can set and
delete a breakpoint of its own, but it does not change the state of your other breakpoints;
see Section 3.12.4 [Resuming Execution], page 36.)

36 ruby-debug

3.12.3 Break conditions (‘condition’)

The simplest sort of breakpoint breaks every time your script reaches a specified place. You
can also specify a condition for a breakpoint. A condition is just a Ruby expression.

Break conditions can be specified when a breakpoint is set, by using ‘if’ in the arguments
to the break command. A breakpoint with a condition evaluates the expression each time
your script reaches it, and your script stops only if the condition is true. They can also be
changed at any time with the condition command.

condition bnum expression
Specify expression as the break condition for breakpoint bnum. After you set a
condition, breakpoint bnum stops your program only if the value of expression
is true (nonzero).

condition bnum
Remove the condition from breakpoint number bnum. It becomes an ordinary
unconditional breakpoint.

The debugger does not actually evaluate expression at the time the condition command (or
a command that sets a breakpoint with a condition, like break if ...) is given, however.

Examples;

condition 1 x>5 # Stop on breakpoint 0 only if x>5 is true.
condition 1 # Change that! Unconditionally stop on breakpoint 1.

3.12.4 Resuming Execution (‘step’, ‘next’, ‘finish’, ‘continue’)

A typical technique for using stepping is to set a breakpoint (see Section 3.12.1 [Breakpoints],
page 33) at the beginning of the function or the section of your script where a problem is
believed to lie, run your script until it stops at that breakpoint, and then step through
the suspect area, examining the variables that are interesting, until you see the problem
happen.

Continuing means resuming program execution until your script completes normally. In
contrast, stepping means executing just one more “step” of your script, where “step” may
mean either one line of source code. Either when continuing or when stepping, your script
may stop even sooner, due to a breakpoint or a signal.

3.12.4.1 Step (‘step’)

step [+-] [count]
Continue running your program until the next logical stopping point and return
control to ruby-debug. This command is abbreviated s.

Like, the programming Lisp, Ruby tends implemented in a highly expression-
oriented manner. Therefore things that in other languages that may appear
to be a single statement are implemented in Ruby as several expressions. For
example, in an “if” statement or looping statements a stop is made after the
expression is evaluated but before the test on the expression is made.

So it is common that a lines in the program will have several stopping points

where in other debuggers of other languages there would be only one. Or you
may have several statements listed on a line.

Chapter 3: ruby-debug Command Reference 37

When stepping it is not uncommon to want to go to a different line on each
step. If you want to make sure that on a step you go to a different position,
add a plus sign (‘+’).

Note: step+ with a number count is not the same as issuing count step+ com-
mands. Instead it uses count-1 step commands followed by a step+ command.
For example, step+ 3 is the same as step; step; step+, not step+; step+;
step+

If you find yourself generally wanting to use step+ rather than step, you may
want to consider using set forcestep, (see Section 3.13.8 [Forcestep|, page 39).

If you have forcestep set on but want to temporarily disable it for the next
step command, append a minus, or step-.

With a count, step will continue running as normal, but do so count times. If
a breakpoint is reached, or a signal not related to stepping occurs before count
steps, stepping stops right away.

3.12.4.2 Next (‘next’)

next [+] [count]
This is similar to step, but function or method calls that appear within the line
of code are executed without stopping. As with step, if you want to make sure
that on a step you go to a different position, add a plus sign (‘+’). Similarly,
appending a minus disables a forcestep temporarily, and an argument count
is a repeat count, as for step.

3.12.4.3 Finish (‘finish’)

finish [frame-number]
Execute until selected stack frame returns. If no frame number is given, we run
until the currently selected frame returns. The currently selected frame starts
out the most-recent frame or 0 if no frame positioning (e.g up, down or frame)
has been performed. If a frame number is given we run until frame frames
returns.

If you want instead to terminate the program and debugger entirely, use quit
(see Section 2.3 [Quitting the debugger], page 21).

Note: Releases before Ruby version 1.8.7 show the return
line as the first line of the method. Starting with version
1.8.7, the last line executed will be shown as the return line.
http://rubyforge.org/tracker/?func=detail&atid=22040&aid=18749&group_
id=426

3.12.4.4 Continue (‘continue’)

continue [line-specification]

c [line-specification]
Resume program execution, at the address where your script last stopped; any
breakpoints set at that address are bypassed.

The optional argument line-specification allows you to specify a line number to
set a one-time breakpoint which is deleted when that breakpoint is reached.

http://rubyforge.org/tracker/?func=detail&atid=22040&aid=18749&group_id=426
http://rubyforge.org/tracker/?func=detail&atid=22040&aid=18749&group_id=426

38 ruby-debug

Should the program stop before that breakpoint is reached, for example, per-
haps another breakpoint is reached first, in a listing of the breakpoints you
won’t see this entry in the list of breakpoints.

3.13 ruby-debug settings (‘set args’, ‘set autoeval’..)

You can alter the way ruby-debug interacts with you using set commands.

The various parameters to set are given below. Each parameter name needs to to be
only enough to make it unique. For example set force is a suitable abbreviation for set
forcestep. The letter case is not important, so set FORCE or set Force are also suitable
abbreviations.

Many set commands are either “on” or “off”, and you can indicate which way you want
set by supplying the corresponding word. The number 1 can be used for “on” and 0 for
“off”. If none of these is given, we will assume “on”. A deprecated way of turning something
off is by prefacing it with “no”.

Each set command has a corresponding show command which allows you to see the
current value.

3.13.1 Set/Show args

set args [parameters]
Specify the arguments to be used if your program is rerun. If set args has no
arguments, restart executes your program with no arguments. Once you have
run your program with arguments, using set args before the next restart is
the only way to run it again without arguments.

show args Show the arguments to give your program when it is started.

3.13.2 Set/Show auto-eval

set autoeval [on | 1 | off | O]
Specify that debugger input that isn’t recognized as a command should be
passed to Ruby for evaluation (using the current debugged program namespace).
Note however that we first check input to see if it is a debugger command and
only if it is not do we consider it as Ruby code. This means for example that
if you have variable called n and you want to see its value, you could use p n,
because just entering n will be interpreted as the debugger “next” command.

See also Section 3.7.3 [irb], page 28 and Section 3.13.4 [Autoirb], page 39.

When autoeval is set on, you’ll get a different error message when you invalid
commands are encountered. Here’s a session fragment to show the difference

(rdb:1) stepp

Unknown command

(rdb:1) set autoeval on

autoeval is on.

(rdb:1) stepp

NameError Exception: undefined local variable or method “stepp' for ...

show args Shows whether Ruby evaluation of debugger input should occur or not.

3.13.3 Execute “list” command on every breakpoint

Chapter 3: ruby-debug Command Reference 39

3.13.4 Set/Show auto-irb

set autoirb [on | 1 | off | O]
When your program stops, normally you go into a debugger command loop look-
ing for debugger commands. If instead you would like to directly go into an irb
shell, set this on. See also Section 3.13.2 [Autoeval], page 38 or Section 3.7.3
lirb], page 28 if you tend to use debugger commands but still want Ruby eval-
uation occasionally.

show autoirb
Shows whether the debugger will go into irb on stop or not.

3.13.5 Set/Show auto-reload

Set this on if the debugger should check to see if the source has changed since
the last time it reread in the file if it has.

3.13.6 Set/Show basename

set basename [on | 1 | off | O]
Source filenames are shown as the shorter “basename” only. (Directory paths
are omitted). This is useful in running the regression tests and may useful in
showing debugger examples as in this text. You may also just want less verbose
filename display.

By default filenames are shown as with their full path.

show basename
Shows the whether filename display shows just the file basename or not.

3.13.7 Set/Show call style

Sets how you want call parameters displayed; short shows just the parameter
names; tracked is the most accurate but this adds overhead. On every call,
scalar values of the parameters get saved. For non-scalar values the class is
saved.

3.13.8 Set/Show Forces Different Line Step/Next

set forcestep [on | 1 | off | 0]
Due to the interpretive, expression-oriented nature of the Ruby Language and
implementation, each line often contains many possible stopping points, while
in a debugger it is often desired to treat each line as an individual stepping
unit.

Setting forcestep on will cause each step or next command to stop at a different
line number. See also Section 3.12.4.1 [Step|, page 36 and Section 3.12.4.2
[Next|, page 37.

show forcestep
Shows whether forcestep is in effect or not.

3.13.9 Set/Show Frame full path

40 ruby-debug

3.13.10 Command History Parameters

show commands
Display the last ten commands in the command history.

show commands n
Print ten commands centered on command number n.

show history filename
Show the filename in which to record the command history (the list of previous
commands of which a record is kept).

set history save [on | 1 | off | O]
Set whether to save the history on exit.

show history save
Show saving of the history record on exit.

set history size number
Set the maximum number of commands to save in the history.

show history size
Show the size of the command history, i.e. the number of previous commands
to keep a record of.

3.13.11 Save frame binding on each call

3.13.12 Set/Show Line tracing

set linetrace [on | 1 | off | O]
Setting linetrace on will cause lines to be shown before run.

show linetrace
Shows whether line tracing is in effect or not.

3.13.13 Set/Show Line tracing style

set linetrace+ [on | 1 | off | 0]
Setting linetrace+ on will cause consecutive trace lines not to be a duplicate of
the preceding line-trace line. Note however that this setting doesn’t by itself
turn on or off line tracing.

show linetrace
Shows whether the line tracing style is to show all lines or remove duplicates
linetrace lines when it is a repeat of the previous line.

3.13.14 Set/Show lines in a List command

set listsize number-of-lines
Set number of lines to try to show in a 1ist command.

show listsize
Shows the list-size setting.

Chapter 3: ruby-debug Command Reference 41

3.13.15 Show Post-mortem handling

Shows wither post-mortem debugging is in effect. Right now we don’t have the
ability to change the state inside the debugger.

3.13.16 Display stack trace when ’eval’ raises exception

3.13.17 Set/Show Line width

set width column-width
Set number of characters the debugger thinks are in a line. We also change OS
environment variable COLUMNS.

show width
Shows the current width setting.

3.14 Program Information (‘info’)

This info command (abbreviated i) is for describing the state of your program. For
example, you can list the current parameters with info args, or list the breakpoints you
have set with info breakpoints or info watchpoints. You can get a complete list of the
info sub-commands with help info.

info args Method arguments of the current stack frame.

info breakpoints

Status of user-settable breakpoints
info display

All display expressions.

info files
Source files in the program.

info file filename [alll|lines|mtimel|shal]
Information about a specific file. Parameter lines gives the number of lines in
the file, mtime shows the modification time of the file (if available), shal com-
putes a SHA1 has of the data of the file. all gives all of the above information.

info line Line number and file name of current position in source.

info locals
Local variables of the current stack frame.

info program
Display information about the status of your program: whether it is running
or not and why it stopped. If an unhandled exception occurred, the exception
class and to_s method is called.

info stack
Backtrace of the stack. An alias for where. See Section 3.11.2 [Backtrace],
page 32.

info thread [thread-number| [terse | verbose]
If no thread number is given, we list info for all threads. terse and verbose
options are possible. If terse, just give summary thread name information. See

42

ruby-debug

information under info threads for more detail about this summary informa-

tion.

If verbose is appended to the end of the command, then the entire stack trace

is given for each thread.

info threads
List information about currently-known threads.

stack frame is shown. Here is an example:
(rdb:7) info threads

1 #<Thread:0xb7d08704 sleep> ./test/threadl.

12 #<Debugger: :DebugThread:0xb7782e4c sleep>

3 #<Thread:0xb777e220 sleep> ./test/threadl.
#<Thread:0xb777e144 sleep> ./test/threadl.
#<Thread:0xb777e07c sleep> ./test/threadl.
#<Thread:0xb777dfb4 sleep> ./test/threadl.

o O

This information includes
whether the thread is current (+), if it is suspended ($), or ignored (!); the
thread number and the top stack item. If verbose is given then the entire

rb:

rb
rb
rb
rb

27

:11
:11
:11
:11

+ 7 #<Thread:0xb777deec run> ./test/threadl.rb:14

(rdb:1)

Thread 7 is the current thread since it has a plus sign in front. Thread 2 is
ignored since it has a !. A “verbose” listing of the above:

(rdb:7) info threads verbose
1 #<Thread:0xb7d08704 sleep>

#0 Integer.join at line test/threadl.rb:27

#1 at line test/threadl.rb:27
12 #<Debugger: :DebugThread:0xb7782e4c sleep>
3 #<Thread:0xb777e220 sleep>

#0 sleep(count#Fixnum) at line test/threadl.rb:11
#1 Object.fn(count#Fixnum, i#Fixnum) at line test/threadl.rb:11

#2 at line test/threadl.rb:23
4 #<Thread:0xb777el144 sleep>

#0 sleep(count#Fixnum) at line test/threadl.rb:11
#1 Object.fn(count#Fixnum, i#Fixnum) at line test/threadl.rb:11

#2 at line test/threadl.rb:23
5 #<Thread:0xb777e07c sleep>

#0 sleep(count#Fixnum) at line test/threadl.rb:11
#1 Object.fn(count#Fixnum, i#Fixnum) at line test/threadl.rb:11

#2 at line test/threadl.rb:23
6 #<Thread:0xb777dfb4 sleep>

#0 sleep(count#Fixnum) at line test/threadl.rb:11
#1 Object.fn(count#Fixnum, i#Fixnum) at line test/threadl.rb:11

#2 at line test/threadl.rb:23
+ 7 #<Thread:0xb777deec run>

#0 Object.fn(count#Fixnum, i#Fixnum) at line test/threadl.rb:14

#1 at line test/threadl.rb:23

info variables
Local and instance variables.

Chapter 4: Post-Mortem Debugging 43

4 Post-Mortem Debugging

It is also to possible enter the debugger when you have an uncaught exception that is about
to terminate our program. This is called post-mortem debugging. In this state many, of
the debugger commands for examining variables and moving around in the stack still work.
However some commands, such as those which imply a continuation of running code, no
longer work.

The most reliable way to set up post-mortem debugging is to use the ‘--post-mortem’
option in invoking rdebug. See Section 2.1.1 [rdebug command-line options|, page 17. This
traps/wraps at the debugger “load” of your Ruby script. When this is done, your program
is stopped after the exception takes place, but before the stack has been unraveled. (Alas,
it would be nice to if one could allow resetting the exception and continuing, but details of
code in Ruby 1.8’s eval.c prevent this.)

If however you haven’t invoked rdebug at the outset, but instead call
ruby-debug from inside your program, to set up post-mortem debugging set
the post_mortem key in Debugger.start. Here’s an example modified from
http://wuw.datanoise.com/articles/2006/12/20/post-mortem-debugging:

$ cat t.rb
require 'rubygems'
require 'ruby-debug' ; Debugger.start(:post_mortem => true)

def t1
raise 'test'
end
def t2
t1
end
t2

$ ruby t.rb

t.rb:8: raise 'test'
(rdb:post-mortem) l=
[3, 12] in t.rb

Debugger.start
Debugger.post_mortem

def t1
raise 'test'
9 end
10 def t2
11 t1
12 end
(rdb:post-mortem)

0 ~NOoO Ok W

Alternatively you can call Debugger.post_mortem() after rdebug has been started. The
post_mortem() method can be called in two ways. Called without a block, it installs a global
at_exit() hook that intercepts exceptions not handled by your Ruby script. In contrast
to using the ‘--post-mortem’ option, when this hook occurs after the call stack has been
rolled back. (I'm not sure if this in fact makes any difference operationally; I'm just stating
it because that’s how it works.)

If you know that a particular block of code raises an exception you can enable post-
mortem mode by wrapping this block inside a Debugger.post_mortem block

http://www.datanoise.com/articles/2006/12/20/post-mortem-debugging

44 ruby-debug

def offender
1/0
end

require "ruby-gems"
require "ruby-debug"
Debugger.post_mortem do
offender
end
Once inside the debugger in post-mortem debugging, the prompt should be (rdb:post-
mortem).

Chapter 5: The Debugger Module and Class 45

5 The Debugger Module and Class

5.1 The Debugger Module

5.1.1 Debugger.start, Debugger.started?, Debugger.stop,
Debugger.run_script

In order to provide better debugging information regarding the stack frame(s) across all
threads, ruby-debug has to intercept each call, save some information and on return remove
it. Possibly, in Ruby 1.9 possibly this will not be needed. Therefore one has to issue call to
indicate start saving information and another call to stop. Of course, If you call ruby-debug
from the outset via rdebug this is done for you.

Debugger.start ([options]) [block]
Turn on add additional instrumentation code to facilitate debugging. A system
even table hook is installed and some variables are set up to access thread
frames.

This needs to be done before entering the debugger; therefore a call to the
debugger issue a Debugger.start call if necessary.

If called without a block, Debugger.start returns true if the debugger was
already started. But if you want to know if the debugger has already been
started Debugger.started? can tell you.

If a block is given, the debugger is started and yields to block. When the block
is finished executing, the debugger stopped with the Debugger.stop method.
You will probably want to put a call to debugger somwhere inside that block

But if you want to completely stop debugger, you must call Debugger.stop as
many times as you called Debugger.start method.

The first time Debugger.start is called there is also some additional setup to
make the restart command work. In particular, $0 and ARGV are used to set
internal debugger variables.

Therefore you should make try to make sure that when Debugger.start is
called neither of these variables has been modified. If instead you don’t want
this behavior you can pass an options has and set the :init key to false. That
is

Debugger.start(:init => false) # or Debugger.start({:init => false})

If you want post-mortem debugging, you can also supply :post_mortem =>
true in Debugger.start.

Debugger.started?
Boolean. Return true if debugger has been started.

Debugger.stop
Turn off instrumentation to allow debugging. Return true is returned if the
debugger is disabled, otherwise it returns false. Note that if you want to
stop debugger, you must call Debugger.stop as many times as you called the
Debugger.start method.

46 ruby-debug

Debugger.run_script(debugger-command-file, out = handler.interface)
Reads/runs the given file containing debugger commands. .rdebugrc is run
this way.

Debugger.last_exception
If not nil, this contains $! from the last exception.

5.1.2 Debugger.context

As mentioned previously, Debugger.start instruments additional information to be
obtained about the current block/frame stack. Here we describe these additional
Debugger.context methods.

Were a frame position is indicated, it is optional. The top or current frame position
(position zero) is used if none is given.

Debugger.context .frame_args [frame-position=0]
If track_frame_args? is true, return information saved about call arguments (if
any saved) for the given frame position.

Debugger.context.frame_args_info [frame-position=0]
Debugger.context.frame_class [frame-position=0]
Return the class of the current frame stack.

Debugger.context.frame_file [frame-position=0]
Return the filename of the location of the indicated frame position.

Debugger.context.frame_id [frame-position=0]
Same as Debugger.context.method.

Debugger.context.frame_line [frame-position=0]
Return the filename of the location of the indicated frame position.

Debugger.context.frame_method [frame-position=0]
Symbol of the method name of the indicated frame position.

Debugger.context.stack_size
Return the number the size of the frame stack. Note this may be less that the
actual frame stack size if debugger recording (Debugger.start) was turned on
at after some blocks were added and not finished when the Debugger.start
was issued.

5.1.3 Debugger.settings

Symbols listed here are keys into the Array Debugger.settings. These can be set any time
after the ruby-debug is loaded. For example:

require "ruby-debug/debugger"
Debugger.settings[:autoeval] = true # try eval on unknown debugger commands
Debugger.listsize = 20 # Show 20 lines in a list command

rargv Array of String. argv[0] is the debugged program name and argv[1..-1] are
the command arguments to it.

:autoeval
Boolean. True if auto autoeval on. See Section 3.13.2 [Autoeval], page 38.

Chapter 5: The Debugger Module and Class 47

rautoirb Fixnum: 1 if on or 0 if off. See Section 3.13.4 [Autoirb], page 39.

:autolist
Fixnum: 1 if on or 0 if off.

:basename
Boolean. True if basename on. See Section 3.13.6 [Basename|, page 39.

:callstyle
Symbol: :short or :last. See Section 3.13.7 [Callstyle], page 39.

:debuggertesting
Boolean. True if currently testing the debugger.

:force_stepping
Boolean. True if stepping should go to a line different from the last step. See
Section 3.13.8 [Forcestep], page 39.

:full_path
Boolean. See Section 3.13.9 [Fullpath], page 39.

:listsize
Fixnum. Number of lines to show in a list command. See Section 3.13.14
[Listsize], page 40.

:reload_source_on_change
Boolean. True if we should reread the source every time it changes. See
Section 3.13.5 [Autoreload], page 39.

:stack_trace_on_error
Boolean. True if we should produce a stack trace on error. See Section 3.13.16
[Trace], page 41.

:width Fixnum. Number of characters the debugger thinks are in a line. See
Section 3.13.17 [Width], page 41.

5.2 The Debugger Class

add_breakpoint(file, line, expr)
Adds a breakpoint in file file, at line line. If expr is not nil, it is evaluated and
a breakpoint takes effect at the indicated position when that expression is true.
You should verify that expr is syntactically valid or a SyntaxError exception,
and unless your code handles this the debugged program may terminate.

remove_breakpoint (bpnum)
When a breakpoint is added, it is assigned a number as a way to uniquely
identify it. (There can be more than one breakpoint on a given line.) To remove
a breakpoint, use remove_breakpoint with breakpoint number bpnum.

breakpoints
Return a list of the breakpoints that have been added but not removed.

48 ruby-debug

5.2.1 The Debugger: :Breakpoint Class
Breakpoint are objects in the Debugger: :Breakpoint class.
enabled? Returns whether breakpoint is enabled or not.
enabled= Sets whether breakpoint is enabled or not.

expr Expression which has to be true at the point where the breakpoint is set before
we stop.

expr=

hit_condition
hit_condition=
hit_count
Returns the hit count of the breakpoint.

hit_value
Returns the hit value of the breakpoint.

hit_value=
Sets the hit value of the breakpoint.

id A numeric name for the breakpoint which is used in listing breakpoints and
removing, enabling or disabling the breakpoint

pos Returns the line number of this breakpoint.

pos= Sets the line number of this breakpoint.

source Returns the file name in which the breakpoint occurs.

source= Sets the file name in which the breakpoint occurs.

5.2.2 The Debugger: :Context Class

Callbacks in Debugger:Context get called when a stopping point or an event is reached.
It has information about the suspended program which enable a debugger to inspect the
frame stack, evaluate variables from the perspective of the debugged program, and contains
information about the place the debugged program is stopped.

at_line(file, line)
This routine is called when the debugger encounters a “line” event for which it
has been indicated we want to stop at, such as by hitting a breakpoint or by
some sort of stepping.

at_return(file, line)
This routine is called when the debugger encounters a “return” event for which
it has been indicated we want to stop at, such as by hitting a finish statement.

debug_load(file, stop-initially)
This method should be used to debug a file. If the file terminates normally, nil
is returned. If not a backtrace is returned.

The stop-initially parameter indicates whether the program should stop after
loading. If an explicit call to the debugger is in the debugged program, you
may want to set this false.

Chapter 5: The Debugger Module and Class 49

5.2.3 The Debugger: :Command Class

Fach command you run is in fact its own class. Should you want to extend ruby-debug, it’s
pretty easy to do since after all ruby-debug is Ruby.

Each Debugger#Command class should have the a regexp method. This method returns
regular expression for command-line strings that match your command. It’s up to you to
make sure this regular expression doesn’t conflict with another one. If it does, it’s undefined
which one will get matched and run

In addition the instance needs these methods:

execute Code which gets run when you type a command (string) that matches the
commands regular expression.

help A string which gets displayed when folks as for help on that command

help_command
A name used the help system uses to show what commands are available.

Here’s a small example of a new command:

module Debugger
class MyCommand < Command
def regexp
/" \s*me$/ # Regexp that will match your command
end

def execute
puts "hi" # What you want to happen when your command runs
end
class << self
def help_command
'me' # String name of command
end
def help(cmd)
Some sort of help text.
%{This does whatever it is I want to do}
end
end
end

Now here’s an example of how you can load/use it:
require 'rubygems'
require 'ruby-debug'
require '/tmp/mycmd.rb' # or wherever
Debugger.start
x=1
debugger
y=2

And now an example of invoking it:

ruby /tmp/testit.rb:

/tmp/testit.rb:7

y=2

(rdb:1) help

ruby-debug help v0.10.3

Type 'help <command-name>' for help on a specific command
Available commands:

backtrace delete enable help method putl set trace

50 ruby-debug

break disable eval info next quit show undisplay
catch display exit irb p reload source up
condition down finish list pp restart step var
continue edit frame me ps save thread where

=~ This is you

(rdb:1) help me

This does whatever it is I want to do
(rdb:1) me

hi

(rdb:1)

5.3 Additions to Kernel

debugger [steps=1]
Enters the debugger in the current thread after a stepping steps line-event steps.
Before entering the debugger startup script is read.

Setting steps to 0 will cause a break in the debugger subroutine and not wait
for eany line event to occur. This could be useful you want to stop right after
the last statement in some scope.

Consider this example:

$ cat scope-test.rb

require 'rubygems'
require 'ruby-debug' ; Debugger.start
1.times do

a=1

debugger # implied steps=1
end
y=1

$ scope-test.rb:8

y=1

(rdb:1) p a

NameError Exception: undefined local variable or method “a' for main:0Object
(rdb:1)

The debugger will get at the line event which follows ‘a=1’. This is outside the
do block scope where a is defined. If instead you want to stop before leaving
the do loop it is possibly to stop right inside the debugger; call with 0 zero
parameter:

$ cat scope-test.rb

require 'rubygems'
require 'ruby-debug' ; Debugger.start
1.times do
a=1
debugger (0)
end

y=1

$ scope-test.rb:8
../1ib/ruby-debug-base.rb:175
Debugger.current_context.stop_frame = 0
(rdb:1) where

Chapter 5: The Debugger Module and Class 51

--> #0 Kernel.debugger(steps#Fixnum) at line ../lib/ruby-debug-base.rb:175
#1 at line scope-test.rb:6
#2 at line scope-test.rb:4

(rdb:1) up

#1 at line scope-test.rb:6

(rdb:1) p a

1

(rdb:1)

As seen above you will have to position the frame up one to be back in your
debugged program rather than in the debugger.

breakpoint [steps=1]
An alias for debugger.
binding_n [n=0]

Returns a ‘binding()’ for the n-th call frame. Note however that you need to
first call ‘Debugger.start’ before issuing this call.

Appendix A: Building and Installing from rubyforge’s Subversion Repository 53

Appendix A Building and Installing from
rubyforge’s Subversion Repository

Here are Unix-centric instructions. If you have Microsoft Windows or OSX some of the
below may need adjusting.

A.1 Prerequisites: To build the package you’ll need at a
minimuirn:
e Ruby (of course). Currently only version 1.8.6 and above but not version 1.9.z work.
e Ruby development headers. This typically includes a file called ‘ruby.h’
e A C compiler like GNU C (gcc)
e Rake

Subversion (svn).

If you want to build the documentation and install Emacs files, you’ll also need:

e a POSIX shell like bash
e autoconf

e automake

e GNU Make

e texinfo

A.2 Basic Package Checkout and Installation

Check out the trunk of repository following the instructions at http://rubyforge.org/scm/?group_
id=1900 For example on a Unixy system, this may work:
mkdir ruby-debug

cd ruby-debug
svn checkout svn://rubyforge.org/var/svn/ruby-debug/trunk trunk

In order to make the Ruby gems, ruby-debug and ruby-debug-base, get yourself into
the trunk directory after the code has been checked out and run:

cd trunk # This is the same trunk checked out above.
rake package

If all goes well you should have some gem files put in the directory pkg. Use the gem
command to install that.

sudo gem install ruby-debug-*.gem # See gem help for other possibilities
If all goes well the rdebug script has been installed ruby-debug is now ready to run. But

if everything goes well you might want to run the built-in regression tests to make sure
everything is okay. See step 3 below.

If the gem install didn’t work,’t there may be a problem with your C compiler or the
Ruby headers are not installed.

http://rubyforge.org/scm/?group_id=1900
http://rubyforge.org/scm/?group_id=1900

54 ruby-debug

A.3 Trying Out without Installing

You don’t have to build a gem file to try out ruby debug. In fact when developing new
features for ruby-debug, developers often you want to try it out before installing. If you
have a problem in the latter part of step 1 you may want to try this approach since we go
into a little more detail as to what happens under the covers when you do the gem install.

Run (from trunk)
rake lib
This creates a Makefile and builds the ruby-debug shared library. (On Unix the name
is ruby_debug.s0).
Once this is done you can run the debugger as you would rdebug using the script
runner.sh. For example (again from trunk)

./runner.sh ~/my-ruby-program.rb

A.4 Running the Regression Tests

We've put together some basic tests to make sure ruby-debug is doing what we think it
should do. To run these (from trunk):
rake test
If you didn’t build the ruby-debug shared library and skipped step 2, don’t worry rake
test will do step 2 for you. You should see a line that ends something like:
Finished in 2.767579 seconds.

12 tests, 35 assertions, O failures, O errors

The number of seconds, tests, and assertions may be different from the above. However
you should see exactly “0 failures, O errors.”

A.5 Building the Documentation and Testing/Installing
Emacs Files

Of course, I recommend you read the ruby-debug manual that comes with the package. If
you have the prerequisites described above, run this once:
sh ./autogen.sh

Then run:

./configure

make

make test # Runs Emacs regression tests
sudo make install # Or arrange to do this as root

A.6 Building for Microsoft Windows

Microsoft Windows is “special” and building ruby-debug-base on it requires extra care.
A problem here seems to be that the “One-click” install is compiled using Microsoft Visual
Studio C, version 6 which is not sold anymore and is rather old.

Instead I suggest building via mingw/msys. http://eigenclass.org/hiki.rb?cmd=view&p=cross+compi:
has instructions on how to do. Some amendments to these instructions.

First, those instructions are a little GNU /Linux centric. If you are using Ubuntu or
Debian, then this should be the easiest to follow the instructions. On Ubuntu or Debian

http://eigenclass.org/hiki.rb?cmd=view&p=cross+compiling+rcovrt&key=mingw

Appendix A: Building and Installing from rubyforge’s Subversion Repository 55

there is a mingw3 Debian package. Installing that will give you the cross compiler that is a
prerequisite. Alternatively if you are running MS Windows I notice that cygwin also has a
mingw package. Or possibly you could use MinGW directly. For other OS’s you might have
to build a cross-compiler, i.e. gcc which emits win32 code and can create a win32 DLL.

After you have a cross compiler you need to download the Ruby source and basically
build a ruby interpreter. The cross-compile.sh script works although when I downloaded it,
it had lots of blank space at the beginning which will mess up the Unix magic interpretation.
That is remove the blanks in front of #/bin/sh.

On my system, this script fails in running make ruby because the fake.rb that got created
needed to have a small change:

ALT_SEPARATOR

should be:
ALT_SEPARATOR = "\\"; \

ll\ll; \

After fixing this, run make ruby. Also, I needed to run make rubyw.
And then make install as indicated.

Once all of that’s in place, the place you want be is in ruby-debug/trunk/ext/win32,
not ruby-debug/ext.

So let’s say you've installed the cross-compiled install ruby in /usr/local/ruby-
mingw32/. Here then are the commands to build ruby-debug-base-zzr-mswin32.gem:

cd .../ruby-debug/trunk/ext/win32

ruby -I /usr/local/ruby-mingw32/1ib/ruby/1.8/i386-mingw32 ../extconf.rb
make # Not rake

cd ../.. # back in ruby-debug/trunk

rake win32_gem

Class, Module Method Index 57

Class, Module Method Index

D Debugger: :Breakpoints.enabled=............. 48
Debugger . add_breakpoint..................... 47 Debugger: :Breakpoints.enabled?............. 48
Debugger.breakpointscoovevnnn... 47 Debugger: :Breakpoints.expr................. 48
Debugger.context.frame_args................ 46 Debugger : :Breakpolnts. eXpr=................ 18
-) Debugger: :Breakpoints.hit_count 48
Debugger. context.frame_args_info.......... 46 Debugger: :Breakpoints.hit_value 48
Debugger.context.frame_flle 46 Debugger : :Breakpoints.hit_value=.......... 48
Debugger.context.frame_id.................. 46 Debugger: :Breakpoints.pos=................. 48
Debugger.context.frame_line................ 46 Debugger: :Breakpoints.source............... 48
Debugger.context.frame_method.............. 46 Debugger: :Breakpoints.source=.............. 48
Debugger.context.stack_size................ 46 Debugger: :Context: :at_line(file, line) ... 48
Debugger.last_exception..................... 46 Debugger: : Context: :at_return(file, line)
Debugger.remove_breakpoint AT 48
Debugger.run_script 46 Debugger: :Context: :debug_load(file,
Debugger.settings................... 46 stop-initially) 48
Debugger.start(block)oovueiennn. 45
Debugger.start (options) 45
Debugger.started?............................ 45 K
Debugger . StOP . ..ottt 45 Kernel::binding n...........covvininennnn... 51
Debugger: :Breakpoints.condition........... 48 Kernel: :breakpoint 51

Debugger: :Breakpoints.condition=.......... 48 Kernel::debugger............ccoiiuunnnnnnnnn. 50

Command Index

Command Index

B

b(break)......oovvvriiiiniiiiiiiinneiiene... 33
break [location]...........c.coiiiiiiiiiiiini.. 33

C

c (continue)o.vuiiiiiiii i 37
cat (catch) ... 34
catch [exception] [on | 1 | off | O]......... 34
condition.....................ia 36
continue [line-specification]............... 37

D

del (delete)ovvuininiiiniiniaianan... 34
delete [breakpoints]......................... 34
disable breakpoints........................ 35
disabledisplay............cooiiiiiiiiii., 27
display [@XPr]...cuvninririiiiii i 26
dOWR [B] oottt 32

E

edit [line-specification].................... 31
enable breakpoints.............. 35
enable displayooviiiiiiiiiiiiiii... 27
eval @XPr ...t 27

F

finish [frame-number]........................ 37
frame [[n] [thread thread-num]]............... 33

H

B (help).ououiei e 24
help [command-name] 24

I 26
infoargs.........oooiiiiiiiii i 41
info breakpoints 34, 41
infodisplay.......................ol 27, 41
infofile....... i 41
info files ... 41
infoglobals.............ooiiiiiiiiii 29
info instance_variables..................... 29
info lineot e 41
infolocals.......coviiiiiiiiinninn.. 29, 41
info program............ol 41
info stack. ..ot 41
infothread..........ooiiiiiiiiinniiiia. 41

59
info threads [terse | verbose] 42
info variables...........l 29, 42
interrupt.......... ... 26
o 28
1 (list) 30
list [line-number|..............ccoiiuiunnn... 30
method class-or-module 30
method instance object 29
method iv object 29
method signature object 29
D (REXE) .ttt 37
next [+-] [count]....... ... it 37
Pleval) . .o 27
PP XD i 27
<= 28
PUtl .o 27
q(Quit)..o.ini 25
quit [unconditionally]....................... 25
R(restart)oooviuiiiiiiiiiiinnnn.n. 26
restart [program args]c...ooiiiin.. 26
S (SEeD) e ui i 36
set args [parameters|......................... 38
set autoeval [on | 1 | off | O].............. 38
set autoirb [on | 1 | off | O]............... 39
set autoreload [on | 1 | off | O]............ 39
set basename [on | 1 | off | O].............. 39
set forcestep[on | 1 | off | O]............. 39
set history save [on | 1 | off | O].......... 40
set history size number...................... 40
set linetrace [on | 1 | off | 0]............. 40
set linetrace+ [on | 1 | off | O]............ 40

set listsize number-of-lines 40

60

set width column-width 41
showargs 38
show autoeval...........coouiiiiiiininennnnn.. 38
show autodrb..........iiiiiiiii i 39
show basename...............ciiiiirninennnn... 39
show commands.covuiiniinennenennnnnn. 40
show commands 1ooviiiiiineeninnnnn.. 40
show forcestepl 39
show history filename........................ 40
show history savecooiiineon... 40
show history size............................ 40
show linetrace ..., 40
show linetrace+coviiiineinnennn... 40
show listsize..........iiiiiiiiiiinnnn... 40
show post-mortem............................. 41
show width..... ...t 41

source filenameuuiuiuiniinunnnnn. 26

ruby-debug

step [+] [count]o 36

U

undisplay [num]. ...l 27
Up [B] oo 32

Vv

var const expr....................i.L 29
var instance exprol 29

General Index

General Index

$

$_ and info breakpoints...................... 34
‘-—annotation’ level............. 18
fmmcldent . 18
‘——cport’ port.......... ... oo 18
Cm=debUG 18
‘mmhelp . 18
‘~—include’ PATHcciiiiiiiiin. 18
‘-—keep-frame-binding’....................... 18
‘——no-control’ 19
‘——mo-quit’ ... 19
‘~—no-rewrite-program’....................... 19
f=mn0=StOP .. 19
C==POTE POt ...t 19
‘——post-mortem’ ... 19
‘——require’ ...l 19
CmmSCTAPE 19
B =15 - ol 19
fe—trace’. . 20
WAL 19
A 18
G 18
o 18
STV PATH oo 18
I 19
P POt 19
L 19
S 19
B PP 18
oW 19
R 20
‘.rdebugrc’ ... 20

A

automatic display...........ol 26

B

backtraces. ... i 32
breakpoint conditions................... ... 36
breakpoint numbers oL 33
breakpoints........................ i 33

C

call stacko i 31

61
command files.............. i 20
conditional breakpoints........................ 36
continuing ... 36
current line........... 30
current stack frame................. 33
Debugger: :Breakpoints.id 48
delete breakpoints........... ...l 34
display of expressions............. ...l 26
F
frame number 32
frame, definition................ 32
mit file..... 20
initial frame............ 32
innermost frame.............. 32
interrupt 21
numbers for breakpoints....................... 33
on-line documentation......................... 24
outermost frame............................... 32
post-mortem debugging............, 43
resuming execution o ... 36
selected block L. 31
stack frame............ L. 32
stack traces.o 32
Stepping. ... 36
tracebacks.......... 32

62 ruby-debug

The body of this manual is set in
cmrl0 at 10.95pt,
with headings in cmb10 at 10.95pt
and examples in cmtt10 at 10.95pt.
cemtr10 at 10.95pt,
cmb10 at 10.95pt, and
cmsl10 at 10.95pt
are used for emphasis.

	Summary of ruby-debug
	The First Sample rdebug Session (list, display, print, and quit)
	Sample Session 2: Delving Deeper (where, frame, restart, autoeval, break, ps)
	Using the debugger in unit testing (ruby-debug/debugger, Debugger.start)
	Using the Debugger.start with a block
	How debugging Ruby may be different than debugging other Languages
	Stack Shows Scope Nesting
	More Frequent Evaluations per Line
	Bouncing Around in Blocks (e.g. Iterators)
	No Parameter Values in a Call Stack
	Lines You Can Stop At

	Getting in and out
	Starting the debugger
	Options you can pass to rdebug
	How to Set Default Command-Line Options

	Command files
	Quitting the debugger
	Calling the debugger from inside your Ruby program

	ruby-debug Command Reference
	Command Interfaces
	Command Syntax
	Command Output
	Getting help (help)
	Help on Subcommands

	Controlling the debugger (quit, restart, interrupt, source)
	Quit (quit)
	Restart (restart)
	Interrupt (interrupt)
	Running Debugger Commands (source)

	Executing expressions on stop (display, undisplay)
	Evaluating and Printing Expressions (p, pp, putl, ps, irb)
	Printing an expression (eval, p)
	Pretty-Printing an expression (pp, putl, ps))
	Run irb (irb)

	Printing Variables (var, method)
	Examining Program Source Files (list)
	Editing Source files (edit)
	Examining the Stack Frame (where, up, down, frame)
	Stack frames
	Backtraces (where)
	Selecting a frame (up, down, frame)

	Stopping and Resuming Execution
	Breakpoints (break, catch, delete)
	Disabling breakpoints (disable, enable)
	Break conditions (condition)
	Resuming Execution (step, next, finish, continue)
	Step (step)
	Next (next)
	Finish (finish)
	Continue (continue)

	ruby-debug settings (set args, set autoeval..)
	Set/Show args
	Set/Show auto-eval
	Execute ``list'' command on every breakpoint
	Set/Show auto-irb
	Set/Show auto-reload
	Set/Show basename
	Set/Show call style
	Set/Show Forces Different Line Step/Next
	Set/Show Frame full path
	Command History Parameters
	Save frame binding on each call
	Set/Show Line tracing
	Set/Show Line tracing style
	Set/Show lines in a List command
	Show Post-mortem handling
	Display stack trace when 'eval' raises exception
	Set/Show Line width

	Program Information (info)

	Post-Mortem Debugging
	The Debugger Module and Class
	The Debugger Module
	Debugger.start, Debugger.started?, Debugger.stop, Debugger.run_script
	Debugger.context
	Debugger.settings

	The Debugger Class
	The Debugger::Breakpoint Class
	The Debugger::Context Class
	The Debugger::Command Class

	Additions to Kernel

	Building and Installing from rubyforge's Subversion Repository
	Prerequisites: To build the package you'll need at a minimum:
	Basic Package Checkout and Installation
	Trying Out without Installing
	Running the Regression Tests
	Building the Documentation and Testing/Installing Emacs Files
	Building for Microsoft Windows

	Class, Module Method Index
	Command Index
	General Index

