File: FutureOE.DOC

date: 2000, September, 25.

The Future OS - handbook, philosophy and conception

I.) I.) The Philosophy of the Future Operating System

 - The Origin of the Future Operating System.............. side 02

 - The hardware and its administration side 02

 - The price, or why is it now for free side 02

II.) The concept of Future OS

 - In common ... side 03

 - Low-level routines side 03

 - High-level routines side 03

 - Control through the Desktop side 03

 - Grouping the OS in Desktop, Monitor and Environment ... side 03

 III.) The construction of FutureOS

 - Memory-management side 04

 - Memory-map of FutureOS side 04

 - Explanation of the system-RAM-variables side 06

 - Selection of a particular FutureOS ROM A, B, C or D ... side 15

 - Program-Architecture side 16

 - Foreground- and Background-programs side 17

 - Interrupts .. side 17

IV.) The Desktop

 - For using the Desktop see file OS-KAN-E.ASC.

V.) The Machine-Monitor

 - In common ... side 18

 - Declaration of every function side 18

VI.) Accurate explanations about specific FutureOS features

 - Managing the keyboard side 20

 - The key occupancy side 20

 - Routines of the keyboard manager side 21

 - Characters, Strings and Control codes side 22

 - Features of the Mode 1 control codes side 23

 - Features of the Mode 2 control codes side 24

 - New definition and redefinition of control codes side 25

 - RAM variables connected with chars and strings side 26

 - Printing chars and strings on the screen side 27

 - Floppy-disc management side 28

 - FutureOS 128 byte file-header side 30

 - Different routines side 31

VII.) Appendix

 - Icons ... side 32

 - Icon-char sets .. side 32

 - The mouse-arrow side 32

 - Ways to control the mouse-arrow side 32

 - Differences between CPC old generation and CPC plus ... side 33

 - Class definitions of CPCs side 33

Read this manual carefully. It will help you omit errors.

I.) The Philosophy of the Future Operating System
- The Origin of the Future Operating System

The idea of Future-OS was born in the end of the 80ies. In those days it was important to make it possible to use a CPC with all the different additional hardware like Dobbertin Hard-disc, RAM-disc and Vortex Double-drive (two 3.5" or 5.25" floppy disc drives) ...

Then, soon a new top-target was found: to create really fast low-level routines. The standard-print-routine of the CPC was always slow, even in the 80ies. In this old times FutureOS looks more like a machine-monitor with support for different disc- and other interfaces.

Later a graphical interface was added, the Turbo-Desktop. It doesn't look like any other desktop. But it has all standard functions and this - I think - comfortably! At least after a little time ;-)

Today, the FutureOS is really a new dimension of CPC-OS. And the only new OS, which is still supported. FutureOS brings new features, which doesn't exist on CPC or other computers. Like working with some drives and hard-disc partitions at one time, like multi-directional filecopy, like programs up to 512K, like the porting-system and the enormous speed.

The price of the speed is the loss of compatibility to old programs. This should not be really a loss, because the old programs are still running under AmsDOS or CP/M.

The data-structures of FutureOS are 100% compatible with the standard CPC-OS. But extensions are added, like the expanded file-header.

Every coder/programmer who is interested in an really fast environment should use FutureOS. There is no faster OS, not for CPCs.

- The hardware and its administration

For every special hardware its own driver was developed and trimmed for maximum speed, regardless to the memory-usage. Maybe you ask why the FutureOS needs 64 KB EPROM, maybe it seems to much for only some OS-functions. But these 64 KB are the origin of Speed. You can program your hardware very easy and fast. All basic structures are given.

Read the listings to know how and look at the documentation of the OS ROMs.

- The price, or why is it now for free

FutureOS was never a commercial project. At the beginning it costs 30 DM. Now you can still buy the full-version for 30 DM. But you can use alternatively the PD version which is free. There are no real differences. One advantage of the paid version it the optimal configuration for every own user. But you can just use "Config OS" to archive the same effect, and I've no work with it ;-)

It's still forbidden to piracy-copy the non-PD-version!

II.) The concept of Future OS

- In common

Logically the OS can be divided in three levels. At the bottom they're the low-level-routines. They are used for a direct control of the hardware (CPC and extensions). In the middle are the high-level-routines. They use the low-level-routines to manage more complex functions. Over all there stands the Turbo-Desktop, it's used to hold contact with the user and for many functions which normally are done by high-level-routines.

The idea is: a program can temporary jump to the Desktop, there you can use all it's functions. The result is: every program therefore looks the same. You mustn't learn it all new for every own program.

In reality the OS isn't really divided into modules, because of a big gain of speed. The machine-monitor for example stands outside this logically division. It has its own routines, you can use, too.

- Low-level routines

They manage the basal features of the system like key-scanning, print a char or string on screen or printer, memory-management, copy or fill memory very fast - faster then LDIR, disc and hard-disc management, show icons and so on.

- High-level routines

The high-level routines are manifold. Some are near the hardware oriented, some others are high complex and go new ways. Some examples are: memory-dump, dynamically expansion-ram (= E-RAM) management, generate load- and save-tables, write to and read from disc or hard-disc, format discs, control directories ...

- Control through the Desktop

The Turbo-Desktop is the interface between artificial and biological intelligence (CPC and human being). One of its main features is to run programs, this way they can use the Environment of FutureOS.

In addition Turbo-Desk contains some functions to make the work easier

- Run programs

- Print files or directories

- Load files

- Save files

- Type files on screen

- Take a look at file-header(s)

- Rename files video oriented
- Erase file(s)

- Copy discs (D,S,i)

- Copy file(s) (multidirectional)

- Format discs (D,S,i)

- Set time & date, alarm-time

- Call the machine-monitor
- and much more ...

The Desktop is able to support a program directly. Every program can give control temporally to the Desktop, for example tagging files ect.

After managing this, the user has to click the OK icon and control is given back to the program. Therefore programs can be made very short and efficient. And you haven't always to type in a filename ;-)

Grouping the OS in Desktop, Monitor and Environment

The OS can be grouped in another way too. Desktop, the Monitor and the Environment are the three pillars of FutureOS. The Machine-monitor allows the direct control over the hardware. The Environment may be the more important pillar. It allows to code easy and short. Therefore a programmer can use simply macros to write a program fast.

III.) The construction of the Operating System

- Memory-management

First some information's about the first 64KB and the therein included system-variables. Afterwards some words about the expansion(E-)RAM. Please take a look at the files #D and #E!

The OS itself uses four 16 KB ROMs: A, B, C and D. They can have different physical ROM-numbers (ROM-select). The ROM-select is fixed, but can be changed through a program. Only one of the ROMs is accessible between &C000 and &FFFF. You can select it.

The E-RAM is divided in 16K blocks, which are banked between &4000 and &7FFF.

Memory Map of the Future Operating System

The standard-RAM (the first 64 KB) can be divided into four 16K blocks (0,1,2, and 3).

Block 0: from &0000 to &3FFF

 Read: 16K RAM or lower-ROM. Char set between &3800 and &3FFF.

 Write: 16K RAM (RST vectors when Interrupt-Mode 1 is used).

You shouldn't use this block for longer times, because of the OS

(Desktop) uses it sometimes as Directory-buffer. A program can freely

use this block. Look at: ROM-?.DOK.

Block 1: from &4000 to &7FFF

 Read: 16K RAM standard- or E-RAM (0-31) or Memory Mapped I/O (CPC+)

 Write: 16K RAM like Reading.

Normally the standard RAM is switched on (&C0), but there can be one

of the 32 E-RAMs, if connected (configuration: &C4,&C5,..,&FF).

Block 2: from &8000 to &BFFF

 Read: 16K RAM the only COMMON Block

 Write: 16K RAM the only COMMON Block
This 16K RAM is always switched on under FutureOS. It contains the

system-variables. The OS uses maximal 8K (between &A000 and &BFFF).

Block 3: from &C000 to &FFFF

 Read: 16K RAM or an Expansion-ROM, normally a FutureOS ROM.

 Write: 16K Video-RAM or ROM-RAM-Box (or similar construct).
Now the system-variables are described, the memory between &A000 and

&BFFF is used in the following way:

BFFF ---\

 ----\

BF00 -----> BE02 to BFFF: 510 bytes stack => 255 elements (16 bit)

 ----/

BE00 ---<

 ----> BD00 to BE00 (incl.) 257 bytes INTERUPT MODE 2 table

BD00 ---<

 ----> BC00..BC7F (Foreground-program), BC80..BCFF (Backgr.prog.)

BC00 ---<

\ 128 byte file-header each

 ----\

BB00 -----\

 ------\

BA00 -------> B800 to BBFF: 1024 bytes as 1K system-variable-memory

 ------/ (further information's, look below)

B900 -----/

 ----/

B800 ---/

B800 ---\

 ----\

B700 -----\

 ------\

B600 -------\

 --------|

B500 --------|

 --------|

B400 --------| B000 to B7FF: 2048 bytes sometimes used as text-screen

 --------| buffer.

B300 --------| These 2K can be used by user or a program, however.

 --------|

B200 -------/

 ------/

B100 -----/

 ----/

B000 ---/

The area between &A000 and &AFFF contains file-tagging-bytes (FTB). They give information's about all reachable files: (no)tagged, read-only-, system and archive-flag.

If the DIRectory of a drive is not read, you can use the corresponding area. The system-variables TURBO_A up to TURBO_M tell if a drive is active and if the DIR of a drive has been read.

A000-A0FF - 256 tagging bytes for drive A, FDC 0 (internal)

A100-A1FF - 256 tagging bytes for drive B, FDC 0 (internal)

A200-A2FF - 256 tagging bytes for drive C, FDC 0 (internal)

A300-A3FF - 256 tagging bytes for drive D, FDC 0 (internal)

A400-A4FF - 256 tagging bytes for drive E, FDC 1 (external)

A500-A5FF - 256 tagging bytes for drive F, FDC 1 (external)

A600-A6FF - 256 tagging bytes for drive G, FDC 1 (external)

A700-A7FF - 256 tagging bytes for drive H, FDC 1 (external)

A800-A9FF - 512 tagging bytes for hard-disc partition I

AA00-ABFF - 512 tagging bytes for hard-disc partition J

AC00-ADFF - 512 tagging bytes for hard-disc partition K

AE00-AFFF - 512 tagging bytes for hard-disc partition L

Every FTB (file-tagging-byte) has the following structure:

Bit 0 - zero => not tagged /// one => file is tagged

Bit 1 - zero => not old-tagged /// one => old-tagged (file was tagged)

Bit 2 - reserved

Bit 3 - reserved

Bit 4 - reserved

Bit 5 - RW / RO ===> structure like in DIR (32er original)

Bit 6 - DIR / SYS ===> structure like in DIR (32er original)

Bit 7 - NoARC / ARC ===> structure like in DIR (32er original)

Under Turbo-Desk a tagged file is shown underlined, an old-tagged file

is shown striked out. An old-tagged file was tagged before the last

file-operation and is now not longer tagged. But it can be retagged.

- Explanation of the system-RAM-variables

In the following a short description is given about every RAM-variable. Please be careful with some of them, because a wrong value can influence the system stability.

The string EQU means "=", both values beside are EQUal.

DS stands for "define space". The value afterwards gives information about how much space the corresponding system-variable uses.

 DR = Drive

DIR = DIRectory (disc or hard-disc)

You can connect two FDC 765 (floppy-disc-controller) to your CPC. The internal controller is the one of Amstrad (or Dobbertin). The external controller is from Vortex, it has different I/O addresses, but is used

the same way like the internal Amstrad controller.

The two following variables show the MSR (main status register of each FDC765:

FDC0_ST EQU &FB7E ;main-status-register(MSR), internal FDC

FDC1_ST EQU &FBF6 ;MSR, external FDC(Vortex)

The above variables show at which address the file-tagging-bytes of a disc or hard-disc starts in RAM (look at the following side, too).

TMS_A EQU &A000 ; <T>agging <M>ass <S>pace_<drive-A>. (FDC internal)

TMS_B EQU &A100 ; drive B

TMS_C EQU &A200

TMS_D EQU &A300

TMS_E EQU &A400 ; first Vortex drive, called E (FDC external)

TMS_F EQU &A500 ; second Vortex drive, called F

TMS_G EQU &A600

TMS_H EQU &A700

TMS_I EQU &A800 ; (Dobbertin hard-disc, first partition I)

TMS_J EQU &AA00 ; second

TMS_K EQU &AC00 ; third

TMS_L EQU &AE00 ; fourth partition, called L

TAR16 EQU &1800 ==> that 8 KB buffer (&1800-&37FF) is used to generate the 16er DIR (shown in Desktop) out of the 32er DIR (written on disc). This conversion is managed through the routine DIRWA.

TXT_SCR EQU &B000 ==> Start of the 2 KB text-screen-buffer

Now the variables between B800 and BBFF are declared. These variables are sorted by sense. For RAM-address look at file #E.

TAS_S1 DS 64 ==> 64 (32*2) bytes for Mode 1 terminal JP table.

TAS_S2 DS 64 ==> 64 (32*2) bytes for Mode 2 terminal JP table.

Look at sides 22-27 for more information.

RAMCHAR DS 1 ==> Tells if the char set of the lower ROM (= &00) or RAM (= &FF) is used. The char set lies between &3800 and &3FFF.

C_POS DS 2 ==> These 2 bytes contain the actual Cursor-POSition. In Mode 2 you have to add a 1. And in Mode 1 you've to add a 2.Mode 1: &BFFE to &C7FE /// Mode 2: &BFFF to &C7FF.

FDC_RES DS 7 ==> The 7 bytes of the result-phase of FDC 0 (internal) or 1 (external, Vortex).

They give information about the success of the last disc-operation.

AKT_ROM DS 2 ==> The low-byte contains the number of the actually selected ROM between 0 and &FF. Afterwards the high-byte follows, it contains the byte &DF, which allows the following construction:

LD BC,(AKT_ROM)
;B = &DF, C = actual ROM select...

OUT (C),C

;switch in on (again)

AKT_RAM DS 2 ==> The low-byte contains the active E-RAM &C4,...,&FF or &C0 (standard 64 KB). The following high-byte &7F makes this code possible:

LD BC,(AKT_RAM)
;B = &7F, C = &C0, &C4,&C5,..,&FF (physical RAM)

OUT (C),C

;switch the through C selected RAM on.

TAST_R0 DS 10 ==> These 10 bytes contain the 10 lines (0 to 9) of the PSG key-matrix. That makes 10 * 8 bit = 80 bit. If one of the 80 keys of the CPC is pressed, its corresponding bit is cleared to zero. If a key is not pressed, its bit is set to 1.

The following 13 * 8 bytes contain information about drives, hard-discs ...

Every drive or partition has 8 bytes, which give status-information.

TURBO_A DS 8 ==> Turbo Desk drive A (Amstrad controller, internal FDC)

TURBO_B DS 8 ==> Turbo Desk drive B

TURBO_C DS 8 ==> Turbo Desk drive C

TURBO_D DS 8 ==> Turbo Desk drive D

TURBO_E DS 8 ==> Turbo Desk drive E (Vortex controller, external FDC)

TURBO_F DS 8 ==> Turbo Desk drive F

TURBO_G DS 8 ==> Turbo Desk drive G

TURBO_H DS 8 ==> Turbo Desk drive H

TURBO_I DS 8 ==> Turbo Desk HD partition I (Dobbertin hard-disc HD20)

TURBO_J DS 8 ==> Turbo Desk HD partition J

TURBO_K DS 8 ==> Turbo Desk HD partition K

TURBO_L DS 8 ==> Turbo Desk HD partition L

TURBO_M DS 8 ==> Turbo Desk virtual RAM-drive M

These groups of 8 bytes give the following information. The sense is the same for all drives or partitions.

* Byte 0 - drive tagging byte. It shows if the drive is active ...

The bits 7, 6, 5 and 4 contains the format-number of the actual disc:

&0X ==> HD partition OR no drive access until now OR unknown format.

&1X ==> the actual disc has VORTEX format.

&2X ==> IBM ----- format.

&4X ==> SYSTEM -- format.

&8X ==> FUTURE-OS format.

&CX ==> DATA ---- format.
Bit 3 shows if the DIR(ectory) had been manipulated, like after the renaming or erasing of some files.

This bit is only relevant if bit 0 is set to 1.

Bit 3 = 0 ==> DIR wasn't manipulated until now.

Bit 3 = 1 ==> DIR is manipulated because of a file operation.

Bit 2 contains the head-number. It is only relevant when you use a single-side format. If the disc is Vortex formatted, it should be = 0 in every case.

Bit 2 = 0 ==> head-number 0 is used (standard).

Bit 2 = 1 ==> head-number 1 is used.

Beware: please let Bit 2 = 0!

Bit 1 gives information if the drive is connected and active. If a drive is not connected or not set active, the corresponding drive-icon is show with bars (in the Desktop).

Bit 1 = 0 ==> the drive is connected and ready to use.

Bit 1 = 1 ==> the drive is not connected or inactive.

Bit 0 shows if the drive is tagged or not. You can only work with tagged drives. If a drive is not tagged it is ignored.

Bit 0 = 0 ==>the drive is not tagged. All other bits can be ignored.

Bit 0 = 1 ==> the drive is tagged, you can work with it.

Now the other 7 bytes are declared. Their values are only important if a drive is set active / is tagged (Bit 0 of Byte 0 is set).

Byte 1 - RAM block &C4..&FF or &C0 (32er DIR, like on disc)

Byte 2 - Start-address (in Pages, each 256 bytes) &40..&7F (32er DIR)

Byte 3 - Length or DIR in pages &00..&40 (32er DIR)

The 32er DIR equals the directory on the disc. It is RAM buffered.

Byte 4 - RAM block &C4..&FF or &C0 (16er DIR, is shown on the screen)

Byte 5 - Start-address (in pages) &40..&7F (16er DIR)

Byte 6 - Length (in pages) &00..&20 (16er DIR)

The 16er DIR is a text-version of the 32er DIR. It is created to show the files on the screen (under Turbo Desk).

Byte 7 - number of 1 Kb entry-pages, every page contain 64 entrys.

TURBO_X DS 2 ==> the low-byte contains the number of the highest free external RAM below all the RAM-buffered DIRs &C4,..,&FF, or &C0 (standard-RAM).

The highbyte has the highest free address in the above RAM (in pages), &41 up to &80.

Example: The byte &78 stands for the address &7800, the RAM below is freely usable.

One more example:

TURBO_X contains &FF, &80 = &80FF with 576K RAM connected and without any read DIRectory.

Under the machine-monitor you can give every Z80-register a value.

This is for calling a mc-routine. You can use these bytes freely.

REG_AF1 DS 2 ==> register AF
==> first register set

REG_BC1 DS 2 ==> register BC

REG_DE1 DS 2 ==> register DE

REG_HL1 DS 2 ==> register HL

REG_AF2 DS 2 ==> register AF'
==> second register set

REG_BC2 DS 2 ==> register BC'

REG_DE2 DS 2 ==> register DE'

REG_HL2 DS 2 ==> register HL'

REG_IX DS 2 ==> register IX
==> index registers

REG_IY DS 2 ==> register IY

REG_SP DS 2 ==> register SP
==> special registers

REG_R DS 1 ==> register R

REG_I DS 1 ==> register I
==> Attention: It MUST be &BD !!

REG_PC DS 2 ==> register PC

The following variables can be used freely by the user. They're called

the user-registers and are used to give values to certain routines.

But use the REG??_? variables only to store values for a short time,

because there are much routines which use these registers too.

REG08_0 DS 1 ==> USER-register 0 (8 Bit)

REG08_1 DS 1 ==> USER-register 1 (8 Bit)

REG08_2 DS 1 ==> USER-register 2 (8 Bit)

REG08_3 DS 1 ==> USER-register 3 (8 Bit)

REG08_4 DS 1 ==> USER-register 4 (8 Bit)

REG08_5 DS 1 ==> USER-register 5 (8 Bit)

REG08_6 DS 1 ==> USER-register 6 (8 Bit)

REG08_7 DS 1 ==> USER-register 7 (8 Bit)

REG16_0 DS 2 ==> USER-register 0 (16 Bit)

REG16_1 DS 2 ==> USER-register 1 (16 Bit)

REG16_2 DS 2 ==> USER-register 2 (16 Bit)

REG16_3 DS 2 ==> USER-register 3 (16 Bit)

REG16_4 DS 2 ==> USER-register 4 (16 Bit)

REG16_5 DS 2 ==> USER-register 5 (16 Bit)

REG16_6 DS 2 ==> USER-register 6 (16 Bit)

REG16_7 DS 2 ==> USER-register 7 (16 Bit)

REG16_8 DS 2 ==> USER-register 8 (16 Bit)

REG16_9 DS 2 ==> USER-register 9 (16 Bit)

REG32_0 DS 4 ==> USER-register 0 (32 Bit)

REG32_1 DS 4 ==> USER-register 1 (32 Bit)

The OS must know how much files are on a disc. The following variables contain the number of different files per disc. Dependent on the format that can be 0 up to 64 (3") or 128 (Vortex) or 512 (hard-disc).

TMD_A DS 2 ==> number of files on drive <A> (internal)

TMD_B DS 2 ==> ...

TMD_C DS 2

TMD_D DS 2

TMD_E DS 2 ==> external FDC (Vortex F1-S, F1-D or Dobbertin D-DOS)

TMD_F DS 2 ==> second drive, under the OS called F

TMD_G DS 2

TMD_H DS 2

TMD_I DS 2 ==> 20 MB Dobbertin hard-disc, first partition, called I

TMD_J DS 2

TMD_K DS 2

TMD_L DS 2

TMD_M DS 2 ==> Memory Floppy (like Otten & Fecht), inactive up now.

The following 8 bytes contain the data of the Dobbertin real-time-clock or the soft-watch. The ROM-version of these bytes contain the burning time and date of the FutureOS Eprom.

UHR_00 DS 1 ==> byte 0: hundredth second

UHR_SEK DS 1 ==> byte 1: second

UHR_MIN DS 1 ==> byte 2: minute

UHR_STU DS 1 ==> byte 3: hour

UHR_WOT DS 1 ==> byte 4: day of week

UHR_TAG DS 1 ==> byte 5: day of month

UHR_MON DS 1 ==> byte 6: month of year

UHR_JAR DS 1 ==> byte 7: year (01 for 2001 ...)

UHR_ROM DS 2 ==> the low-byte equals the ROM number of the smart-watch itself. This should be &0F = 15, but another ROM-select can be chosen. It's the clock itself and not the ROM with the time-software!

The high-byte must be &DF in every case, to allow the following code:

LD BC,(UHR_ROM)
 ;B = &DF, C = number of the Dobbertin smartwatch

OUT (C),C

 ;switch the smart-watch on.

The two following variables contain the actual size of the screen. In every case the Mode 2 values are given, that doesn't depend on the real screen mode (0,1,2 (or 3)).

It's not allowed to go over these maximal-values when positioning the cursor, else errors could happen. In the worst case bytes can be written anywhere in the RAM. Therefore, if using control-codes in strings, don't use bigger values.

MAX_CRX DS 1 ==> maximum columns per line, mode dependent (max. 104!)

MAX_CRY DS 1 ==> maximum lines per screen, mode dependent (max. 40!)

MAX_RAM DS 1 ==> This value contains the number of 16K expansion-RAM blocks which can be used freely without a memory hole. Start at RAM &C4. But look in XRAM_?? if you're allowed to use them!

RET_COU DS 1 ==> 8 bit reload counter for a special control code Return. It is decreased at every carriage return of the screen. Normally not used.

RET_REL DS 2 ==> Address of a routine which is called when RET_COU comes below zero. Normally not used.

FREEZE DS 1 ==> If this variable is set to " 1 " all the drive tagging bytes (TURBO_A .. _M) are not allowed to be manipulated through any program. Only the user is allowed to change them (by tagging a drive icon). FREEZE therefore is a main-control-switch.

DIRIN DS 1 ==> This important variable gives information if any DIR is read into the buffer RAM. If a DIR is read, this variable contains the drive number (&00..&0C).

If DIRIN is &FF, no DIRectory has been read.

If you want to access a drive, check DIRIN first. Then search in TURBO_A..M which drive DIR has been read.

The config/setup bytes are 12 bytes which give information about the OS, connected hardware ...

Please look in the file #D (or #D-E) too!!

KF_MED DS 1 ==> contains the number of disc and hard-disc drives in common. The following bytes give deeper information about that.

KF_FDHD DS 1 ==> tells if an internal and/or an external FDC is connected, if a hard-disc is connected and which types are connected.Furthermore it tells if an real-time-clock and/or a tape is available.

KF_AB DS 1 ==> contains the number of tracks and sides of drive A and drive B, how much inches they have and if they're useable.

KF_CD DS 1 ==> contains the number of tracks and sides of drive C and drive D, how much inches they have and if they're useable.

KF_EF DS 1 ==> contains the number of tracks and sides of drive E and drive F, how much inches they have and if they're useable.

KF_GH DS 1 ==> contains the number of tracks and sides of drive G and drive H, how much inches they have and if they're useable.

KF_MEM DS 1 ==> reserved for further extensions (memory-disc).

KF_SIO DS 1 ==> information about connected serial interface(s), if the printer port has 7 or 8 bits, if a monochrome or a color screen is connected.

KF_CPC DS 1 ==> this byte encodes the used CPC-type and the language of the user. A program can look there and decide how to run (selection of language).

KF_VERS DS 3 ==> these three bytes contain the type-number of the OS (standard, extended, PD-version) and the name of the user.

The following five variables/bytes are used by the routines SC_AB, SC_AU and SCRI:

TDRAM DS 1 ==> the RAM block of the 16er DIR of the actual drive.

TDHST DS 1 ==> high-byte of the start-address of the 16er DIR.

TDANZ DS 1 ==> number of 1 KB pages.

TDAKT DS 1 ==> actual 1K page (shown on the Desktop-screen).

TDLWK DS 1 ==> actual drive.

MO_ST DS 1 ==> this byte allows the manipulation of the drive-motor-status. Normally it is set to &00, therefore all drive-motors are off when no drive-access is made.

But if MO_ST contains the Byte &FF all drive-motors are running permanently. Therefore you don't need the HEAD-LOAD-TIME, in the case of FutureOS the READY-TIME. Maybe running all the time is not good for the drives. How to switch the drives on or off?

Drive-motors on: LD BC,&FA7E : LD A,&FF : OUT (C),A ;MSB = 1

Drive-motors off: LD BC,&FA7E : OUT (C),C ;Bit 0=0 => MSB = 0
Under FutureOS there are four Keyboard-levels. These four levels * 80 bytes determine the value (&00-&FE) of a key.

TAST_N DS 80 ==> 80 bytes for key matrix 10 * 8 ==> NORMAL level

TAST_S DS 80 ==> 80 bytes for key matrix 10 * 8 ==> SHIFT level

TAST_C DS 80 ==> 80 bytes for key matrix 10 * 8 ==> CONTROL level

TAST_SC DS 80 ==> 80 bytes for key matrix 10 * 8 ==> SHIFT/CONTROL lev.
You can connect up to 512 KB expansion-RAM to your CPC (2 MB with RAMcard). The CPC and FutureOS use the E-RAM in form of 16 KB blocks, which are banked between &4000 and &7FFF. With 512 KB there are 32 blocks each with 16 KB.

Every one of the 32 16 K E-RAMs has its own 1 byte variable, which says if the RAM is present or not. And it gives additional information about the current use of the corresponding RAM. Such a variable is in

the following way constructed:

Bit 7 ==> = 1 ==> RAM is occupied through a loaded file.

Bit 6 ==> = 1 ==> RAM is used through a multitasking-routine/program.

Bit 5 ==> = 1 ==> ??? reserved!!!

Bit 4 ==> = 1 ==> RAM is used by the user, the OS ignores it!

Bit 3 ==> = 1 ==> RAM is used as short-time-buffer.

Bit 2 ==> = 1 ==> RAM is used as long-time-buffer.

Bit 1 ==> = 1 ==> RAM buffers one or more DIRectories (disc or HD).

Bit 0 ==> = 1 ==> RAM is connected /// = 0 ==> RAM doesn't exist.

Only one of the Bits 1..7 is allowed to be set to one. These bits inform in which way the 16 K RAM block is used. These are the 32 variables, each for one 16 KB block:

XRAM_C4 DS 1 ;32 eXpansion RAMs - one byte for every 16 KB block.

XRAM_C5 DS 1

XRAM_C6 DS 1

XRAM_C7 DS 1

XRAM_CC DS 1

XRAM_CD DS 1

XRAM_CE DS 1

XRAM_CF DS 1

XRAM_D4 DS 1

XRAM_D5 DS 1

XRAM_D6 DS 1

XRAM_D7 DS 1

XRAM_DC DS 1

XRAM_DD DS 1

XRAM_DE DS 1

XRAM_DF DS 1

XRAM_E4 DS 1

XRAM_E5 DS 1

XRAM_E6 DS 1

XRAM_E7 DS 1

XRAM_EC DS 1

XRAM_ED DS 1

XRAM_EE DS 1

XRAM_EF DS 1

XRAM_F4 DS 1

XRAM_F5 DS 1

XRAM_F6 DS 1

XRAM_F7 DS 1

XRAM_FC DS 1

XRAM_FD DS 1

XRAM_FE DS 1

XRAM_FF DS 1

In the FutureOS machine-monitor you can set the RAM/ROM state for all operations. The following variables contain its status:

MON_ROM DS 1 ==> &82 ==> lower ROM on /// &86 lower ROM off.

MON_RAM DS 1 ==> number of the E-RAM block &C4..&FF or &C0 norm. 64K

MON_MMB DS 1 ==> &A0 ==> Memory mapped I/O off // &B8 ==> MM active.
Attention: Only the CPCplus has Memory Mapped I/O.

The routine XWART has its own variables. They decide about the waiting times. Look at the file CALL-A.DOK too.

VZ_MOD DS 1 ==> waiting mode = 0 then first waiting for key, else not

VZ_AG DS 2 ==> waiting for first key (reload value)

VZ_AA DS 2 ==> waiting for first key (actual left time)

VZ_FG DS 2 ==> waiting for next key (reload value)

VZ_FA DS 2 ==> waiting for next key (actual left time)

The following two variables handle disc errors, number of tries.

FDCLSA DS 1 ==> actual try to read/write disc FDC 0/1 (variable)

FDCLSV DS 1 ==> number of tries to read/write disc FDC 0/1 (constant)
Every disc-drive has its own specific step-rate-time. The step-rate-times of all 8 drives (A..H) are located in RAM at DSWZ. Every drive has one byte, the lower nibble MUST be zero. For example:

--------> A ! B ! C ! D ! E ! F ! G ! H <--- drive

DSWZ DB &A0,&A0,&E0,&E0,&E0,&E0,&E0,&E0

DEFINT DS 1 These variable defines if interrupts are allowed (EI) or not (DI). Beware! FutureOS works in Interrupt-Mode 2!! NOT in IM 1.

If it contains the value &00 all interrupts are switched off (DI). But if it has the value &FF the interrupts are allowed (EI).

Please install some code to deal with interrupts before switching it on. An interrupt manager for example.

DEFRAS DS 1 Decides if a colour Raster is displays in the Desktop. The value &00 switches the Raster off, &FF switches it on. Try it!

The OK icon allows to jump back to a program (back form the Desktop). It has some own 16 bit variables.

OK_ADR DS 2 ==> ADDRess which is called through the OS icon (&????).

OK_ATE DS 2 ==> This value added to (OK_ADR) must be &FFFF.

OK_BLK DS 2 ==> 16K RAM switched on through OK (&7F00 + &C0,&C4..&FF).

OK_BTE DS 2 ==> This value added to (OK_BLK) must be &FFFF.
CAPS DS 1 defines the Caps-Lock-mode. If it's &00 it's all like usual, but if CAPS is set to &FF only BIG characters are shown at keypress.

The following 16 bit variables are used through the I icon:

I_ADR DS 2 ==> ADDRess which is called through the I icon (&????).

I_ATE DS 2 ==> value added to (I_ADR) must be &FFFF.

I_BLK DS 2 ==> banked RAM at I icon call &7F00 + &C0,&C4,&C5,..,&FF.

I_BTE DS 2 ==> value added to (I_BLK) must be &FFFF.
The following variables can be used to manage the printer spooler.

DRUMEM DS 1 ==> phys. block-nr. first E-RAM block Spooler &C4..&FF

DRUBAZ DS 1 ==> number of direct following E-RAM blocks 0..31 for it.
A future RAM-disc is managed through the two following variables:

MMFMEM DS 1 ==> first E-RAM block of RAM-disc &C4..&FF

MMFBAZ DS 1 ==> number of direct following E-RAM blocks 0..31

HI_MEM DS 2 ==> shows the highest free byte, like in basic, normally it's &9FFF. But it is not used through the OS. If a program catches RAM is should set this variable correct.

AUH_00 DS 1 ==> 8 bytes, like UHR_??? data

AUH_SEK DS 1 ==> It mirrors the old time

AUH_MIN DS 1 ==> before the last read of the RTC

AUH_STU DS 1

AUH_WOT DS 1

AUH_TAG DS 1

AUH_MON DS 1

AUH_JAR DS 1

WECK_ST DS 1 ==> = &00 ==> NO alert-time // &FF ==> alert is active

WECK_ZS DS 1 ==> second alert-time

WECK_ZM DS 1 ==> minute

WECK_ZH DS 1 ==> hour

BILD_SS DS 2 ==> start-address screen-saver

BILD_RB DS 1 ==> E-RAM of the screen-saver

BILD_ST DS 1 ==> &00 ==> NO screen-saver loaded // &FF ==> saver active

BSS_WW DS 2 ==> screen-saver reload-counter &0000-&FFFF

BSS_WA DS 2 ==> actual decreasing value of screen-saver, fewer BSS_WW
L_RAM DS 1 ==> &00 => lower RAM not buffered else &C0-&FF => physical RAM number where the lower RAM (&0000-&3FFF) is buffered.

BORDER DS 1 ==> hardware-color value of the Border

INK_0 DS 1 ==> hardware-color INK 0 (background)

INK_1 DS 1 ==> hardware-color INK 1 (pen 1)

INK_2 DS 1 ==> hardware-color INK 2 (pen 2)

INK_3 DS 1 ==> hardware-color INK 3 (pen 3)

HGB_RB DS 1 ==> RAM &C4..&FF for a 16 KB background picture (Desktop)

HGB_ST DS 1 ==> Background pic state, &00 => no Pic, &FF => Pic loaded

FDC_ERR DS 2 ==> address FDC765-error-handler

FDE_RAM DS 2 ==> error-handler-RAM &C0..&FF, followed by the byte &7F

Some of the above variables aren't used through the Desktop, but a program must deal with them. Only this way it's possible to create a cooperative OS.

Under FutureOS you can run some programs parallel, therefore they must look at the system-variables, especially the XRAM_?? variables!

Selection of a particular Future OS ROM A,B,C,D

FutureOS and its routines are split into four ROMs. They're called A, B, C and D.

If you want to use an OS-routine, you have to select the corresponding OS-ROM before, if the correct ROM isn't selected.

Select ROM A:
LD BC,(&FF01)
;C = physical ROM number, B = &DF

OUT (C),C

;switch ROM A on

Select ROM B:
LD BC,(&FF07)
;ROM B

OUT (C),C

;switch ROM B on

Select ROM C:
LD BC,(&FF0D)
;ROM C

OUT (C),C

;switch ROM C on

Select ROM D:
LD BC,(&FF13)
;ROM D

OUT (C),C

;switch ROM D on

To call an OS-routine in one of the 4 OS-ROMs you mustn't go the above direct way. You can use the following routines which select the correct OS-ROM for you: ROM_A, ROM_B, ROM_C or ROM_D. The new ROM is set on, the target-routine (HL = addr) is called and the new ROM stays switched on.

The routines ROM_S2T (S = source, T = target) select an OS-ROM for one target-routine-call, afterwards the source ROM is selected again. S and T can be one of the four ROMs A,B,C or D.

Example: The routine ROM_A2C calls the target-routine in ROM C. ROM A is switched on after the end of the target-routine. The address of the target-routine is given in IX.

Deeper information about ROM-switching is given in the file CALL-GEN.DOK. Please look there!

Since version .5 the FutureOS supports further expansion ROMs (E-ROM). An example E-ROM could be provided by Future Soft.

- Program-Architecture

A BASIC/AMSDOS program has the maximum length of 42 KB. Under the 63K CP/M 2.2 or CP/M 3.1 (plus) a program may reach up to 62 KB. Bigger programs have to load separate overlays.

FutureOS allows a program to grow up to 0.5 MB (all E-RAMs). Normally you shouldn't use more than 480K, because FutureOS needs about 32 KB for buffering e.g. directories.

* There are two general types of FutureOS-programs. The first type is the main-memory-program. They're located in the first 64 KB (standard RAM, configuration &C0). The maximum program-length is 40K (&0000-&9FFF). But such a program can use further buffers, let's say 4K.

These main-memory-programs should end with the extension .64K. Start them with the RUN-icon.

Attention: The RAM-block from &0000 to &3FFF is used by some routines. Furthermore there must be a char set between &3800 and &3FFF. Switch the lower ROM temporary on or load a char set at &3800.

* The second kind of a program is the expansion-memory-program. Its size only depends on the connected E-RAM. Therefore they can have a maximum size of 512 KB (all 32 E-RAMs occupied).

Expansion-memory-programs should end with the extension .X16. These programs have a special architecture. Normally there is a short start-program, which tests if enough E-RAM is connected, then the main part is loaded into E-RAM. The corresponding RAM-variables XRAM_C4 .. _FF must be adapted! Every E-RAM block which is used must be marked in the XRAM_?? variables with the byte &81. Only then the RAM is secured from other programs or the OS.

The variable AKT_RAM should get the physical value of the first block of the expansion-memory-program, normally this is &C4 (first E-RAM).

LD BC,&7FC4

;look below!!!

LD (AKT_RAM),BC
;if the program starts in block &C4 (1. E-RAM).

An expansion-memory-program is separated in 16 KB blocks, therefore bank-switching is required. The banking must be considered at coding-time or better before. Think about it!

At address &8000 you should copy a routine that manages the automatic switching to the next E-RAM. Example:

 ORG &8000 ;routine starts at &8000

 PUSH AF ;save the registers

 PUSH BC

 LD BC,(AKT_RAM) ;get old E-RAM-status out of AKT_RAM

 INC C

 SET 2,C ;select the next 16 KB E-RAM block

 OUT (C),C ;switch the new E-RAM on (between &4000 and &7FFF)

 LD (AKT_RAM),BC ;write the new E-RAM configuration back in AKT_RAM

 POP BC

 POP AF ;get old register values

 JP &4000 ;jump to the start of the new E-RAM

The separation of the RAM brings some restrictions, like length of a string, a string can't be divided into two E-RAM blocks. You can't access all subroutines while one RAM-configuration is set. May we have to live with it, it could be worst. It's still the best method to develop programs bigger than 64 KB on CPC.

Theoretically you can switch complete 64 KB banks but then you have no access to the screen RAM!

With a new defined control-code it is no problem to make strings as long as the expansion-RAM.

Foreground- and Background-Programs

Independent of the fact if a program is located in main or expansion-memory, all programs can be a foreground or a background-program.

What's a foreground-program? If a program is loaded into memory it will become automatically the foreground-program. The file-header of such a program is moved to &BC00. These 128 bytes, from &BC00 to

&BC7F, always contain the header of the last loaded program or file (if it has an header).

In the Desktop you can start a foreground-program new with the RUN icon, without using the OK icon.

If you load/start a new foreground-program the header of the old program gets overwritten with the new header. Therefore the old foreground-program gets lost.

To give a program the possibility to nest/stay resident in RAM, I've developed the so called background-program. Foreground- & background-programs are equal with one difference: The file header of an

background-program is located between &BC80 and &BCFF. The program itself must copy its &80 byte header from &BC00 to &BC80 to become a background program.

But every program which want to install itself as new background-program has to look if an old background-program it there (simply by checking the test-sum of the file-header, located there). The user has to remove the old background-program by ending/closing it. Therefore every background-program must posses the feature of self-termination, than means to delete its file-header form BC80 to &BCFF.

Shellstack: There is the alternative to conserve the header of the old background-program and reinstall it after ending the new one.

- Interrupts

FutureOS works in Interrupt-Mode 2 (Vector-Interrupt-Mode). Some CPCs seem not to work in this mode. But IM 2 is very powerful, because of an external interrupt can brunch to a distinct address in RAM.

Therefore every producer of external hardware can easily target his own drivers for new developed hardware. An IDE controller is a good example.

Normally the interrupts are DIsabled under FutureOS. But the possibility exists to enable them. But this makes only sense if the CPC is Interrupt-Mode 2 compatible!

Every program can install its own interrupts at &0038. It's only one thing to do, install the interrupt routine at &0038 and switch the CPC into interrupt mode 1 (IM 1). The lower RAM must be selected, and a char set must be installed at &3800. It is absolutely necessary to switch the lower ROM off, because it would jump anywhere at the first interrupt.

Before returning to the Desktop the Interrupt-Mode should be reset to 2 and interrupts should be disabled (DI:IM 2). Furthermore the value of the I Register must be kept, it must be &BD (LD A,&BD:LD I,A). The I Register gives the highbyte of the interrupt-mode 2 jump-table.

Well, which CPC is now Interrupt-Mode 2 compatible? All CPCs with Dobbertin-HD-controller are automatically compatible. But if the CPC has NO expansion it is mostly not IM 2 compatible.

No problem! Without expansions no Interrupt-Mode 2 is needed! There is only one internal Interrupt source.

If you have installed a Z280 or Z380 MPU, you can use the Interrupt-Mode 3 too.

The NMI (at address &0066) can be freely used by every program which wants to do it. Example: the planned 8-bit Inicron-network.

V.) The Machine-Monitor

The machine-monitor provides a very powerful tool. You can access every bit in RAM. And you can manipulate every I/O address, you have full 16 bit access and therefore total interface potential. If you want to start/test an machine routine you can use the machine-monitor or the RUN icon. But in the monitor you can set ALL Z80 registers before calling a routine. But please use this powerful tool only if you know your CPC and its features very well.

At all important stages of a function you can stop with the ESC key. Values and numbers must be entered in the hexadecimal system.

d = Future OS - <d>ump/edit system

This function allows you to look at the memory in hexadecimal and ASCII. First you're asked for a 16 bit start-address. After entering this address &01E0 bytes are shown. 16 bytes are shown per line. The hexadecimal values left and the ASCII-chars at the right side. Use the Cursor-keys UP / DOWN to show the page before or afterwards.

Alternatively you can press the "e" key, then you enter the Memory-Editor. Every other key would return to the menu of the monitor. In the Editor the cursor is shown at the upper position at the left side. You can move the cursor with all four cursor-keys. If you want to change a byte, just press the "COPY" key, then you can enter the new hexadecimal value. Finish with Return or quit with ESC.

To leave the Editor-mode you have to press the little Enter-key. The parameters selected with "c = RAM/ROM <c>onfiguration" are considered by this dump/edit function.

p = Future OS - <p>orting system

This feature allows you to send bytes to I/O addresses or to get bytes from an I/O address.

The cursor can be moved with the cursor-keys. ESC brings you back to the menu.

If you want to read from an port-address, just move the cursor to the corresponding address (left side) and press COPY to read the actual value form your hardware. This value is shown immediately.

If you want to send a byte to a device, you have to move the cursor to the correct line (right side) and press COPY. Now you have to type in the hexadecimal value you want to output. Finish it with RETURN and the value will be sent immediately.

e = <e>dit all Z80 registers

This point is used to change the values of all the Z80 registers. It is important if you call an mc routine with the machine-monitor, then these - here given - values are written in the Z80 registers before starting the mc routine. If an mc routine is finished and it returns to the monitor these editable RAM-registers contain the values from the mc routine.

If you edit the registers the first time, then they have the values from the jump into the monitor (via CARET).

All Z80 registers are shown with their values. Use the cursor-keys to go to the register you want to change, then press COPY and enter the new hexadecimal number. Press RETURN to end or ESC to abort. To leave this point just press the little Enter key.

The values edited here are stored in the 16 bit RAM-variables REG_AF to REG_PC. Look before.

c = RAM/ROM <c>onfiguration

Here you can define if you want to work with active ROM or RAM and which RAM should be active. All other functions of the monitor take care of these settings.

First you're asked if the lower ROM (it contains the char set!) should be selected. Type "y"es or "n"o.

Afterwards you're asked for the physical RAM-configuration. But use only the following values: &C0 (standard 64 KB) or &C4-&FF (one out of 32 E-RAMs). The selected RAM is switched between &4000 and &7FFF.

If you own a CPCplus and the personal-version of FutureOS then you can switch the Memory-Mapped-I/O on or off (y or n).

The MM-I/O is switched on between &4000 and &7FFF instead of RAM. The MM groups have highest priority.

m = <m>ove memory block

With this feature you can move a memory block form one to another address in RAM.

First you're asked for the start-address, it's the first byte of the block you want to move.

Then you're asked for the end-address, the last byte of the block.

Third you have to enter the target-address of the block, that is where the block should be copied to.

Attention! The RAM between &B800 and &BFFF is not allowed to be overwritten. It contains the system-variables!

i = <i>nitialize memory block

This function allows you to initialize a RAM-block. First you enter the start and end-address of this block (inclusive). Then you're asked for a 16 bit value. With this value the defined block is initialized.

r = call an mc <r>outine

With "r" you call an machine code "r"outine in RAM. The Z80 registers are loaded out of the variables REG_AF - REG_PC. See before!

You're asked for the start-address of the routine, ROM and RAM is selected like under point "c" defined.

You can stop entering the start-address by pressing ESC.

x = Future OS - e<x>it the MONITOR

Like you can imagine this point is made to leave the machine monitor and return to the Desktop.

You can't leave the monitor through (unwanted) pressing of ESCape.

VI.) Accurate explanations about specific FutureOS features

- Managing the keyboard

The keyboard manager of FutureOS is differently organized than the key control of the old CPC-OS or CP/M. In the following the two digital Joysticks are seen as a part of the keyboard.

* The old CPC-OS scans the keyboard at every interrupt. Under FutureOS the keyboard is scanned directly on demand. If you want to know the state of some keys, you can use an appropriate routine. There are much ways to scan the keys.

What is the sense of the direct key-scan? First, the keyboard is used not very often. Normally not more than 10 keys are pressed every second. Therefore it makes no sense to scan the keyboard if nobody is interested.

Moreover a direct key scan is more effective than an interrupt driven scan. The keys are scanned on demand, therefore their status is more actual. The interrupt state doesn't matter.

* Under other OS there are only three keyboard levels (normal, shift and control). FutureOS has a fourth level, in which shift and control are pressed both.

But some keys can't be used in the shift + control keyboard level. The nine following keys can't be used:

"SPACE" ; "DEL" ; "f0" ; "f." ; "," ; "." ; "V" ; "X" and "Z"

If you connect an external keyboard to your CPC you can use all the keys.

But if you can resign these nine keys the fourth level can be used very sense full. Because of the fact that three keyboard levels only display 3 * 80 = 240 chars. But not all 256.

The key occupancy

A special RAM area is reserved for the status of the four keyboard levels (80 bytes each). These areas equals the keyboard matrix.

If you want to change the character which corresponds to a key in one of the four levels, just change it in one of the four keyboard RAMs.

The table of the NORMAL ------ level starts in RAM at TAST_N = &B980

The table of the SHIFT ------- level starts in RAM at TAST_S = &BA00

The table of the CONTROL ----- level starts in RAM at TAST_C = &BA80

The table of the SHIFT+CONTROL level starts in RAM at TAST_SC = &BB00

These four levels exist in the FutureOS ROM C at XAST_N = &FDAA. There you can change a key for ever. But beware or you could loose important keys.

Routines of the keyboard manager:

Under FutureOS there is a variety of routines to manage the keyboard. You should refer to the file CALL-AAA.DOE. The following routines are declared bit for bit in this file.

The most important routine of the keyboard manager may be H_ALLET. This routine gives an ASCII value back, which belongs to a pressed key. The ASCII value is read out of the RAM tables (see before), the SHIFT and CONTROL keys are considered.

Normally the routine H_ALLET or H_XALLET is best to scan the keyboard. But there are some special routines in addition:

TST_TS
 scans if any key is pressed in common (Yes/No)

WART_TS
 waits until no key (or joystick) is pressed any longer

XWART
 like WART_TS, but has defined first and second waiting times

HOLE1TS
 scans if a very special key is pressed or not

HOLETST
 reads the state of all 80 keys into RAM

A_F_0_9
 scans only the keys 0-9 and a-f from the keyboard, pressed

 keys are displayed in mode 2 on the screen (at C_POS)

H_ALLET
 scans keyboard, but the Caps-Lock state is NOT regarded

H_XALLET
 like H_ALLET, but the CAPS-LOCK state IS regarded

H_CURA
 scans only the four cursor keys and the copy key

H_CCE

 scans cursor keys, copy & little enter. Joystick compatible

CUR_CPY
 scans cursor keys, copy and the ESC key

H_JOY

 scans both digital joysticks. Bit compatible to H_CCE

H_JC

 scans joysticks and cursor keys. Equals H_JOY + H_CCE

H_CS

 scans the SHIFT and CONTROL keys

BIT8_IN
 is an input routine for 8-bit values, hexadecimal

B16IN

 is an input routine for 16-bit values, hexadecimal

STED

 shows and edits a string. This string has a 16 bit length

Like you see, there exist different routines. But normally a program shouldn't need more than X_HALLET, XWART and STED.

The keyboard matrix of the CPCs:

------------.-------.-------.-------.-------.-------.-------.------

//// bit 7 ! bit 6 ! bit 5 ! bit 4 ! bit 3 ! bit 2 ! bit 1 ! bit 0

------------!-------!-------!-------!-------!-------!-------!------

l0 : f. ! ENTER ! f3 ! f6 ! f9 ! Cur.D ! Cur.R ! Cur.U

------------!-------!-------!-------!-------!-------!-------!------

l1 : f0 ! f2 ! f1 ! f5 ! f8 ! f7 ! Copy ! Cur.L

------------!-------!-------!-------!-------!-------!-------!------

l2 : CTRL ! \ ! SHIFT ! f4 !] ! RET. ! [! CLR

------------!-------!-------!-------!-------!-------!-------!------

l3 : . ! / ! : ! ; ! P ! @ ! - ! ^

------------!-------!-------!-------!-------!-------!-------!------

l4 : , ! M ! K ! L ! I ! O ! 9 ! 0

------------!-------!-------!-------!-------!-------!-------!------

l5 : SPACE ! N ! J ! H ! Y ! U ! 7 ! 8

------------!-------!-------!-------!-------!-------!-------!------

l6 : V ! B ! F ! G ! T ! R ! 5 ! 6

------------!-------!-------!-------!-------!-------!-------!------

l7 : X ! C ! D ! S ! W ! E ! 3 ! 4

------------!-------!-------!-------!-------!-------!-------!------

l8 : Z ! Caps ! A ! TAB ! Q ! ESC ! 2 ! 1

------------!-------!-------!-------!-------!-------!-------!------

l9 : DEL ! fire3 ! fire2 ! fire1 ! Joy.R ! Joy.L ! Joy.D ! Joy.U

------------"-------"-------"-------"-------"-------"-------"------

Explanations: R = right, L = left, D = down and U = up. The "f." is the point in the block of function keys. l0-l9: line of key matrix.

Chars and Strings

BASIC allows you to display single chars and strings. This routine is very mighty, it functions in all modes, allows different print modes and more. The price you pay is that this PRINT is very, very slow.

FutureOS has different ways to display chars, strings or terms (terms are strings with control codes).

Characters can be displays in Mode 1 and 2, but not in Mode 0. Mode 0 chars are really too big, and therefore it makes no sense.

The highly specific routines of FutureOS can display characters up to 80 times faster than the PRINT routine from BASIC.

Attention: for every kind of char or string routine you need a char set from &3800to &3FFF.

You can switch the lower ROM on or you can load a software character set at &3800. Look at the RAM-variable: RAMCHAR (&B847).

The control codes of the Future Operating System

You can define all control codes of the FutureOS very freely. But only the first 32 chars are control codes (0..31 / &00-&1F). These 32 chars are only then used as control codes if a terminal routine is used,

like TERM_2, TER_BB ...

Some of the control codes are occupied by the FutureOS itself, you can but shouldn't change them. These codes are enough to hold the Desktop working.

If you want to emulate an alien terminal (e.g. ANSI) or if you want to implement your own routine you can easily change control codes.

For screen Mode 1 and 2 a own control code table exists, therefore the same control code can have different functions under Mode 1 or 2.

Each of these tables consist out of 32 code addresses (16 bit, 64 bytes).

Control code table for Mode 1: TAS_S1 = &B800 to &B83F

Control code table for Mode 2: TAS_S2 = &B900 to &B93F

These tables start with control code &00 (00) and finish with code &1F (31). First the low-byte, then the high-byte of the address of the control code routine.

Features of the Mode 1 control codes

The following information are for Mode 1 control codes only, because there are little differences to Mode 2 control codes.

Some control codes have equal function in both modes, there are described in detail under "Features of the Mode 2 control codes"

Code &00 = 00 : End of a string, look Mode 2.

Code &01 = 01 : RAM chars (lower-RAM) are selected (&3800..&3FFF).

Code &02 = 02 : ROM chars (lower-ROM) are selected, lower ROM on.

Code &03 = 03 : Select E-RAM between &4000 and &7FFF, look Mode 2.

Code &06 = 06 : Half a space, the cursor position is moved right for a half space. This allows to include half spaces between Mode 1 chars.

Code &08 = 08 : display x spaces. After code &08 the number of spaces (x) follows. x can have a value between 1 and 127.

Code &09 = 09 : TAB (1-8 chars), look Mode 2.

Code &0A = 10 : LINEFEED without Return, look Mode 2.

Code &0B = 11 : Clear screen, like the BASIC command CLS.

Code &0C = 12 : Cursor home, most up left position, look Mode 2.

Code &0D = 13 : RETURN without Linefeed, look Mode 2.

Code &0E = 14 : real RETURN, equals the Codes &0A+&0D, look Mode 2.

Code &0F = 15 : set new text-address, where string continues, look M2.

Code &10 = 16 : all following chars are printed with Pen 1. Pen 1 is now the new used Pen.

Code &11 = 17 : Pen 2 is now standard.

Code &12 = 18 : Pen 3 is now standard.

Code &13 = 19 : Mixed Pen 1 & 2 color is now standard. All chars have two colors (very fast!).

Code &1A = 26 : End of a string, look Mode 2.

Code &1D = 29 : Zoom some chars * 8, look Mode 2.

Code &1E = 30 : LOCATE 32 * 32, sets cursor at a new position on the screen. Two bytes must follow after Code &1E. The first gives the new Y-position (0..31) of the cursor, the second contains the new X-position (0..31).

But use this control code only if the screen is set to 32 chars per line and 32 lines per screen. You can set the screen to 32 * 32 with the routine S64X32.

Code &1F = 31 : LOCATE 40 * 25, the cursor can be set to a new position on the screen. Control code &1F is followed by two bytes, first the Y-position (0..24), then the X-position (0..39).

You can only use this control code if the screen has 25 lines and 40 character per line.

You can switch the screen to 40 * 25 with the routine S80X25.

Features of the Mode 2 control codes

Code &00 = 00 : End of a String. Every string must have a end, the end of a string is marked with a byte &00. (code &1A has the same sense)

Code &01 = 01 : switch lower RAM on, a char set must start at &3800.

Code &02 = 02 : select lower ROM, the ROM char set is used now.

Code &03 = 03 : Selects an expansion-RAM between &4000 and &7FFF. After code &03 one byte follows, it contains the physical RAM select. This can be &C4, &C5, &C6, &C7, &CC ... &FF or &C0 (switch first 64 KB on). This control code allows to show a string anywhere in the E-RAM.

Code &04 = 04 : show vertical x times the char y in 80 * 25 mode. Code &04 displays a char (y) x times one beneath the other. Two bytes follow after code &04. The first says how often the second byte should be displayed. The cursor position is moved only one to the right. This code can only be used if the screen is set to 80 characters per line and 25 lines (use S80X25).

Code &05 = 05 : show a char (y) for x times vertical in 64 * 32 mode. Two bytes follow after code &05. First the number how often the char should be displayed. Second the char itself. The chars are printed one beneath the other. The cursor is moved one position right. Only use code &05 with 64 chars/line and 32 lines/screen (S64X32).

Code &06 = 06 : moves cursor one position to the right (space).

Code &07 = 07 : display char y for x times horizontal. Code &07 prints a char for x times, after code &07, three bytes follows. First the low and second the high byte of the number how often the char should be printed. Third the char which should be displayed itself.

Code &08 = 08 : print x spaces on screen. Code &08 is followed by one byte which contains the number of spaces (1..255) which should be added to the actual cursor position.

Code &09 = 09 : TAB, the cursor is set right to the next TAB position. A TAB position exists every eight positions.

Code &0A = 10 : LINEFEED, the curser is moved one line down, but he is NOT moved to the left end of the line, NO RETURN is made.

Code &0B = 11 : the screen is cleared, equals BASIC command CLS.

Code &0C = 12 : Cursor home, the cursor is set at the first position of the screen, that means the most left, most up position.

Code &0D = 13 : RETURN, the cursor is set at the left end of the actual lime. But NO Linefeed is made!

Code &0E = 14 : real RETURN, the cursor is set at the left end of the next line below. Code &0E equals Code &0A and &0D.

Code &0F = 15 : set new text-address. Code &0F is followed by two bytes, which contain the new address where the string is continued (first the low byte, then the high byte).With code &0F you can jump from one string into another.

Code &10 = 16 : all following chars are now displayed normal, without any attributes.

Code &11 = 17 : the chars are now printed inverse.

Code &12 = 18 : following chars are shown italic.

Code &13 = 19 : all following chars are now underlined.

Code &14 = 20 : now all chars are printed crossed out.

Code &1A = 26 : End of the string. This is the same as code &00, it is kept for compatibility with ASCII code.

Code &1D = 29 : Zoom some chars (* 8). Code &1D is followed by one byte which contains the number of chars to zoom eightfold. The number of zoomed chars should lie between 1 and 8, depending on the cursor position.

Code &1E = 30 : LOCATE 64 * 32, the cursor is set at a new position on the screen. Code &1E is followed by two bytes, the first contains the Y-position (0..31), the second contains the X-position (0..63).

You can use this code only if the screen is set to 64 columns and 32 lines. Use S64X32to set 64 * 32 mode.

Code &1F = 31 : LOCATE 80 * 25, the cursor is set new. Code &1F is followed by two bytes. The first one gives the Y-position (0..24), the second one contains the X-position (0..79).

This code can only be used with 80 columns and 25 lines per page, use S80X25 to set 80*25 mode.

New definition and redefinition of control codes:

The FutureOS allows to give every control code its own routine. If you change a control code, please take care of the conventions. Be very careful!

But how to give a control code a new function? This is shown in the following:

- Every control code has two bytes in RAM twice. Two bytes for Mode 1 and two bytes for Mode 2. These two bytes contain a address (first low, second high). This address contains the routine which is called through the control code.

- If a control code appears, its corresponding address is read in RAM, and the Z80 jumps to this address (mode dependent).

- To (re)define a control code you have to fit its RAM bytes with the address of the routine which should be called through that control code. Write the routine addresses in the tables TAS_S1 (for Mode 1) and TAS_S2 (for Mode 2). The tables start with code &00.

- Now the control code is new defined.

Attention: the routine for a new control code is in NO case allowed to change the ROM state! ROM A must be switched active! Else the system would crash.

Furthermore the content of register DE must be copied to HL after the end of the control code routine. If you don't use DE, its enough to code EX DE,HL at the end. If you want to use DE too, look at the following listing..

If the control code is followed by some parameter bytes you can read them at DE. Else DE contain the address of the next following text byte. Look listing...

Example:

To give control code &00 under Mode 2 a new function, you only have to put a new target address at &B900 (first lowbyte, then highbyte).

The control code table for Mode 2 starts at &B900.

If you want to redefine code &00 for Mode 1, you have to put the target address at &B800 (not &B900). Formula: contr.code * 2 + &B800 or &B900

Example for a new control code general:

ConCode
PUSH DE

; save DE on the stack

????????????
; now the control code subroutine follows

POP HL

; load old value (from DE) into HL!

RET

; and back.

Example: Control Code to set the border color:

SET_BOR
LD BC,&7F00 : OUT (C),C
 ; select Border color register.

LD A,(DE) : INC DE
 ; get new color, it follows cont.code

OUT (C),A

 ; set the new Border color active.

EX DE,HL : RET

 ; transfer DE to HL and back.
If you want to reset the control-code-tables (like they have been after the start of the OS) just use routine CSTI in ROM A.

RAM variables connected with chars and strings

In the OS-RAM there are not only the two control code tables for MODE 1 and 2. More variables exist.

* First you should know C_POS. C_POS contains the actual cursor position. Normally it contains a value between &BFFF and &FFFF. C_POS is a direct vector into the screen RAM.

The vector C_POS has a screen mode dependent displacement. Mode 2 C_POS contains a value one less than the real cursor position. Under screen mode 2 you have to add two bytes to C_POS for the real position of the cursor. The reason is that the char printing routines first increase C_POS and then print the next char. In Mode 1 you have double width chars, therefore you have to add two to C_POS (one in Mode 2).

* The variables MAX_CRX and MAX_CRY are interesting too. They contain the number of columns per line (MAX_CRX) and the lines per page (MAX_CRY). Both variables contain Mode 2 compatible values. The real screen mode doesn't matter.

Example: Screen Mode 1 is active, the screen has 25 lines, every line has 40 chars. Then MAX_CRX contains the value 80, because of its Mode 2 compatibility. In real MAX_CRX contains the screen bytes per line.

Both variables are used by some control codes. Therefore don't abuse them. The routines S80X25, S68X30 and S64X32 set MAX_CRX and MAX_CRY correctly.

* RAMCHAR is one more important variable. It decides if a ROM or a RAM char set is used, that means if the lower ROM is switched on or off.If RAMCHAR contains the value &00, the lower ROM is switched on, the ROM char set will be used.

But if RAMCHAR = &FF the RAM char set (at &3800) is used. There must be a RAM char set between &3800 and &3FFF!

Example: (these lines should stand at every program start)

 LD BC,&7F81
 ;switch MODE 1 on // (or use LD BC,&7F82 for Mode 2)

 LD A,(RAMCHAR)
 ;RAM or ROM char set ?

 AND A,&04

 ;Bit 2 isolated! If set => then switch lower RAM on

 OR A,C

 ;Bit 2 and &81 (or &82 for Mode 2) are mixed

 OUT (C),A

 ;switch lower RAM / ROM on, they contain the char set

Printing single chars on the screen:

* Mode 1: Under screen mode 1 you can print chars in every one of the three colors. Furthermore you can display chars in a color mix of the pens 1 and 2, this is the fastest mode 1 display routine.

PRI0GG ==> display a char with pen 1 (normally yellow).

PRI0BB ==> display a char with pen 2 (normally blue).

PRI0RR ==> display a char with pen 3 (normally red).

PRI0GB ==> display a char with pen 1 and 2 (yellow, blue).

* Mode 2: Under screen mode 2 you can print chars with attributes:

PR_2 ==> displays a char without any attribute.

PR_2I ==> displays a inverted char.

PR_2K ==> displays a char italic.

PR_2U ==> displays a char underlined.

PR_2D ==> displays a char streaked out.

All these routines (located in ROM A) display a control char as a char on the screen. The functions of the control codes are not executed.

Display a string with defined length on the screen

A string is a chain of chars with defined length. Control codes are displayed, not executed. The corresponding routines lie in ROM A.

* Mode 1: Strings can be displayed in all three colors and with the mixed pen 1+2 color. Therefore use:

STR_GG ==> Pen 1 (normally yellow).

STR_BB ==> Pen 2 (normally blue).

STR_RR ==> Pen 3 (normally red).

STR_GB ==> Pen 1 + 2 (normally yellow, blue).

* Mode 2: Strings can be displayed with all five attributes, use:

STR_2 ==> normal

STR_2I ==> inverted

STR_2K ==> italic

STR_2U ==> underlined

STR_2D ==> streaked out

Display Terms with variable length, and control chars

A Term is a string of chars with a variable length. All 32 control codes are executed. A Term is ended by the byte &00 or &1A. Like usual you have to take care that a char set is existing at &3800. Alternatively switch the lower ROM on, then you use the ROM char set.

* Mode 1: Terms can contain chars in all colors and the mixed-color chars can be used too. Control codes can switch the color.

TER_GG ==> Pen 1

TER_BB ==> Pen 2

TER_RR ==> Pen 3

TER_GB ==> Pen 1 + 2

Mode 2: You can use all five attributes and switch between then through control codes.

TERM_2 ==> normal

TERM_2I ==> inverted

TERM_2K ==> italic

TERM_2U ==> underlined

TERM_2D ==> streaked out

With PR2GR you can display 8-fold zoomed chars.

Floppy-disc management

The disc-manager is one of the most complex collection of FutureOS routines. It's very tricky to program the FDC765 properly. AmsDOS and CP/M are bad examples, and therefore slow.

FutureOS is compatible to AmsDOS & CP/M disc formats (Data, System, ibm, Vortex) and file formats (binary and ASCII). Despite this kind of compatibility, the FutureOS disc-manager is organized in a different way. The bigger part of ROM B is occupied by low-level disc-routines. Some high-level routines are located in ROM C.

Compared with AmsDOS the FutureOS disc-manager is expanded. Especially the file-headers of non-ASCII files.

Furthermore FutureOS supports up to eight (8!) disc-drives running at the same time.

Four drives can be connected to the internal FDC765. Normally you can connect only two drives (A and B), but with a little hardware patch you can connect up to four drives (A, B, C and D). The internal FDC is that one which is implemented in the CPC664 and CPC6128 mother-board or is shipped with the DDI-1 3" floppy disc drive. It's base-address (main-status-register) is at &FB7E.

The so called external FDC can drive up to four disc-drives normally (E, F, G and H). This external FDC is implemented in the disc-drives F1-D or F1-S from Vortex. It's base address is &FBF6.

The difference between the two FDCs is only the base-address, you can use the same software to program them.

The architecture of the disc-manager

The FutureOS disc-manager is completely different organized than the one from AmsDOS or CP/M.

Under FutureOS all read DIR(ectories) of the drives are buffered in RAM. You have to read the corresponding DIRs before starting file-operations. Indeed the DIR-buffering uses much RAM, but it has big advantages. If you write to disc, or read from disc the read/write-head has only to step to the data-tracks of a file. It has NOT always to step back to the DIR. Combined with the fast track-load (or track-write) routines the disc-manager is several times faster than AmsDOS. Furthermore the DIR is only written once if you use a mass-operation like Erase, REName or what ever.

If AmsDOS loads a file, it loads one block after another. FutureOS first creates a Track/Sector table out of all the blocks of a file. Then all the data will be loaded in the fastest way (without interleave, for speed-up). Writing a file is done the same way.

In addition no head-load-time is existing. After starting the drive-motor, the drive is used after it is ready. In this waiting time the T/S table is created.

Every drive has its OWN Step-rate-time. If you connect a faster drive, you can adapt its step rate time in RAM. The step rate time of all eight drives (A..H) is located at DSWZ = &BA50 in RAM and at RSWZ = &C017 in ROM B of FutureOS. These bytes are organized this way:

 &00 ==> 32 ms step rate time // &10 ==> 30 ms step rate time

 &20 ==> 28 ms step rate time // &30 ==> 26 ms step rate time

 &40 ==> 24 ms step rate time // &50 ==> 22 ms step rate time

 &60 ==> 20 ms step rate time // &70 ==> 18 ms step rate time

 &80 ==> 16 ms step rate time // &90 ==> 14 ms step rate time

 &A0 ==> 12 ms step rate time // &B0 ==> 10 ms step rate time

 &C0 ==> 8 ms step rate time // &D0 ==> 6 ms step rate time

 &E0 ==> 4 ms step rate time // &F0 ==> 2 ms step rate time

Standard 3 inch drives can run with 12 ms (10 ms?). Newer 3.5 or 5.25 inch drives (80 tracks) should run with only 4 ms. But be careful!

Remember: The lower the step rate time is, the faster the disc access.

Routines of the FDC management:

Much different disc routines are included into the FutureOS. The coder can use every kind of low-level routine to gain access over the (two) FDCs. There are routines to read (or write) tracks and DIRs to (from) disc or hard-disc. The high-level routines allow you to read/write a file, to format discs, read file-headers and more.

Because of the huge number of disc-routines, there are not show here again. Just look at the file CALL-B.DOK. Every routine is discussed in detail. Routines to generate track/sector tables are in ROM C, like some high-level routine too. Look at: LADEN, LADE_N, SICHRE in ROM C.

Construction of a 128 byte file-header under AmsDOS and Future OS

AMS-DOS:

 0 1 2 3 4 5 6 7 8 9 A B C D E F

00 UU N0 N1 N2 N3 N4 N5 N6 N7 E0 E1 E2 00 00 00 00 - User, Name, Ext.

10 00 00 TY 00 00 SL SH 00 LL LH AL AH 00 00 00 00 - Typ,St.,Len,A.St

20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 - unused

30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 - unused

40 LL LH 00 CL CH ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? - Length, Checksum

50 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? - not defined

60 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? - not defined

70 ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? - not defined

Abbreviations: Typ = file-type, St = Start-/Load-Address, Len = file-length and A.St = Auto-Start-Address.

L = low, H = high.

Under FutureOS a file-header is expanded. The bytes which are defined through AmsDOS keep its functions. But all other bytes are used too.

 Future OS:

 0 1 2 3 4 5 6 7 8 9 A B C D E F

00 UU N0 N1 N2 N3 N4 N5 N6 N7 E0 E1 E2 I0 I1 I2 I3 - User, Name, Ext.

10 I4 I5 TT XX YY SL SH SB LL LH AL AH OL AB I6 I7 - Typ,X,Y,St,L,ASt

20 I8 I9 IA IB IC ID IE IF I0 I1 I2 I3 I4 I5 I6 I7 - Icon-data 08-17

30 I8 I9 IA IB IC ID IE IF I0 I1 I2 I3 I4 I5 I6 I7 - Icon-data 18-27

40 LL LH IT PL PH I8 I9 IA IB IC ID IE IF I0 I1 I2 - Len,IcoTyp,PrSm.

50 I3 I4 I5 I6 I7 I8 I9 IA IB IC ID IE IF I0 I1 I2 - Icon-data 33-42

60 I3 I4 I5 I6 I7 I8 I9 IA IB IC ID IE IF I0 I1 I2 - Icon-data 43-52

70 I3 I4 I5 I6 I7 I8 I9 IA IB IC ID IE IF I0 I1 I2 - Icon-data 53-62

FUTURE OS - 128 byte file-header, byte after byte:

Byte(s) ! meaning, function

--------!----------------------------

 00 ! User number of file &00..&FE, don't use &E5 or &FF!

01 - 08 ! Filename (8 bytes)

09 - 0B ! Extent (3 bytes)

0C - 11 ! I00 to I05 (6 bytes) icon-data

 12 ! File type: &00 = basic, &02 = binary, &0A = Prowort

 ! Protected files: add &01, example: &01 = protected basic

 ! FutureOS files: add &80, 8. bit is set

 13 ! Horizontal range or X-width for semi-graphic-icon

 14 ! Vertical range or Y-lines for semi-graphic-icon

15 - 16 ! Low, High-byte start/load-address of file

 17 ! Physical RAM-block of start/load address: &C0,&C4,&C5-&FF

18 - 19 ! Low, High-byte file-length (first 16 bit)

1A - 1B ! Low, High-byte auto-start-address, else &0000

 1C ! Over-byte of file-length ==> file-length up to 16 MB

 1D ! Physical RAM-block of auto-start-address: &C0,&C4,&C5-&FF

1E - 3F ! I06 to I27 (34 bytes) icon-data

40 - 41 ! Repeat of L, H-byte file-length, but NOT USED!

 42 ! Icon-type: text-, graphic- or semi-graphic icon

43 - 44 ! Low, High-byte checksum of this file-header

45 - 7F ! I28 to I62 (59 bytes) icon-data

--------!----------------------------------

Such a header contains &63 = 99 byte icon-data. The icon-type-byte (&42) decides which kind of icon the file-header contains. This can be a graphic icon with 4 * 3 or 6 * 2 chars, a semi-graphic-icon or a text-icon. There are four different icon-types. All icons must be shown in screen mode 1 with 32 chars and 32 lines.

If the icon is a text-icon (icon-type is &00), the text can give information about the contents of the file or what ever.

A semi-graphic-icon (type &02) contains text in its icon-data too. These chars are displayed as an ASCII-rectangle. The header-bytes &13 and &14 contain the rectangles X and Y range. But X * Y must be < &64.

Text and semi-graphic icons can contain all 256 chars. All chars are displayed as chars! NOT as control codes! The difference is that the text of a text-icon is displayed as one string, whereas a semi-graphic icon is a rectangle made of chars.

The true graphic icons contain only screen mode 1 graphic-data. They can have the format 2 * 3 (type &01) or 3 * 2 (type &03) chars.

Therefore a graphic-icon uses only 4 * 3 * 8 = 96 bytes from the 99. With the three more bytes you can do whatever you want.

Programs with header under Future OS:

Look under 'program architecture' for information about the different types of programs for FutureOS. Please look there!

If you want to start a program, you have to tag it in the DIR. Then click the RUN icon. Now the first tagged file will be load and start. The program must contain a file header which gives information where to load and start the program.

If you want to create a program bigger then 40K, you should plan it as a program for E-RAM. A little loader can start the program itself if wanted. This loader can load the big program into actual free E-RAM.

Remember: E-RAM is expansion-RAM, it consists out of 16 KB blocks you can switch on between &4000 and &7FFF.

An E-RAM program is loaded completely into E-RAM, therefore it can contain up to 498 KB (emergency: up to 512K). If you have the French 2 MB expansion, your program can contain up to 2 MB, that depends on your disc or hard disc format.

Different routines

Now some interesting routines are discussed. Look in ROM C files.

- F_FILL8 and F_FILL6 : the fastest possibility to fill CPC-RAM with an 8 or 16 bit value. Every byte is written in only 1.5 µs.

- F_MOVE : a fast way to move memory blocks, faster then LDIR. Every byte is moved in only 5 µs. Only a DMA chip is faster.

- LESC : The fastest way to clear the screen (&C000-&FFFF) like CLS.

- FMD32 : searches the first tagged file in all read DIRs.

- LADE_N : Load a file which is defined through drive, user number, name and extension (disc & hard disc).

- LADEN : Loads the first tagged file in RAM, like LADE_N.

- SICHRE : Saves a file, only defined through drive, user number, name and extension (disc and hard disc).

- CARET : For a program this is the entry into the machine monitor, all Z80 registers are saved in its RAM registers.

- TEILA : Load a part of a file.

- TEISI : Save a part of a file.

- TYSAZ : Types a file on the screen. Screen mode 2 is used.

- LADAH : Loads only the file header of a file.

- DHED : Shows a FutureOS file header in mode 1 (32*32).

For file-operations use the Desktop via the OK icon!

In ROM D only some routines / entries are really interesting...

KLICK : Jump back to FutureOS, if the upper part of the screen wasn't changed, the icons must remain intact. Mostly used by little programs with only little output to the screen.

TUR_E : This is THE standard Jump into FutureOS for a program. Use it!

TUR_D : Like TUR_E, but resets all DIRs (no DIR read) and the RAM variables TURBO_A to TURBO_M are initialized.

Further look at: S64X32, S68X30, S80X25, FESB, MUL88, SSB0, RRB0 and different routines for your printer

VII.) Appendix

- Icons

The Turbo-Desk uses icons extensively. All icons and icon-char-sets (used to display time & date) need about 9,5 KB in ROM D.

The addresses of the graphic-data of all icons and icon-char-sets are listed in the file #E.

Every icons was painted to use it under screen mode 2. It is 6 mode 2 chars broad and 3 chars height (6 * 3). Every pixel of the icon border must be set. If you want to include own icons or just change an icon you can do this by changing the data in ROM D, but ... attention!

An icon is included in ROM D in the following way: The first six bytes consist out of the graphic data from left to right, then come 6 bytes for the next scan-line below. But the most upper and most lower lines are missing, because they're always drawn as a line (all bytes &FF). This is made by ICON6ON (ROM D). Every icon consists therefore out of 22 lines (number of scan-lines - 2 = 8*3-2 = 22) with 6 bytes each.

If you have painted an own icon and want to install it into FutureOS just send it to me, I can install it for you.

- Icon-char-sets

The difference between icons and icon-char-sets lie in their width. Icons from icon-char-sets are only 3 (not 6) bytes broad. In ROM D they are saved like normal icons. First the most left byte of the first scan-line, then the middle-byte, then the right byte. Then the three bytes of the next scan-line below. And, like normal icons, they miss the upper and lower scan-line, because of these two lines are displayed as a line. To show an char-set-icon use ICON3ON (ROM D).

Two icon-char-sets are existing in ROM D, they contain the numbers from zero up to nine. With ICON3ON you can display these big numbers in your own programs without problems. As long as you're working under screen mode 2 with 64 chars and 32 lines (like the desktop).

The mouse-arrow

The old generation CPCs use a software-sprite as mouse-arrow, whereas the CPCplus uses an hardware-sprite for this function. Hardware-sprite zero (memory-mapped address &4000) is used.

If you want to change the mouse-arrow you can create and install your own arrow into ROM D. Or let me install it for you.

The CPCplus version of FutureOS uses a compressed sprite format (128 bytes instead of 256), whereas the soft-sprite for the old generation CPCs isn't compressed.

Ways to control the mouse-arrow

To communicate with Future OS (that means to move the mouse-arrow) you can use different instruments. The multiscan environment recognizes what ever you're using. The following possibilities are given:

- Joystick 0 or Joystick 1, with fire-buttons 0 and 1.

- Cursor-keys + Copy + little Enter.

- Joystick-compatible mouse or the Atari-ST mouse.

- Marconi Trackball, Joy-compatible Trackballs or Atari-Trackball.

- Analog-Joystick (only 6128plus).

- LightPen + Copy (today only for 6128plus).

Differences between CPC old generation and CPC plus

FutureOS exists in two versions, one for the CPCs old generation and one for the Plus series CPCs. As programmer of the OS I tried to keep the differences very little.

A FutureOS program should be able to run under both versions, because the differences don't influence the program environment.

The FutureOS version for the old CPCs is 100% compatible to the new CPCs. At the moment the only free version is the one for the old CPCs, the FutureOS for CPCplus is at the moment only available in german.

The main-difference between both versions is the sprite (mouse-arrow) you use to control the Desktop. Whereas the old CPCs use a software sprite, the CPCplus uses a hardware sprite (with 15 colors).

Only the FutureOS for the old CPCs is able to work with an Atari-ST mouse or trackball, the reason lies in the CPCplus hardware.

On the other hand only the FutureOS version for the new CPCs supports an analog-joystick and an light-pen, the reason lies once more in the hardware. The old CPCs simply have no port for analog-joysticks.

There is one more difference. In the machine-monitor you can configure your system. That means switch the lower ROM or RAM on, and select the external RAM which is banked between &4000 and &7FFF. The CPCplus version allows you, in addition, to switch the memory mapped groups on or off (between &4000 and &7FFF). This allows you to deal direct with the new hardware of the CPCplus.

Attention: There is an incompatibility! The CPC464 can't be used 100% with FutureOS, because of the fact that the software sprite leaves a smear on the screen. The problem is that a CPC464 can't use the RAM configuration &C3 which is needed for the software sprite. All other features are still running on a CPC464 too. In addition FutureOS likes expansion RAM and 64KB RAM aren't much. If you connect expansion RAM to your CPC464 which supplies your CPC with the corresponding banking code &C3 (that means CP/M+ compatibility) the FutureOS should be able to run!

Class definitions of CPCs:

Class 0 CPC: 64K RAM, no drive (CPC-464)

Class 1 CPC: 64K RAM, 3" drive (CPC-664)

Class 2 CPC: 128K RAM, 3" drive (CPC6128)

Class 3 CPC: 128K RAM, 3" drive, 2. drive: 80 tracks, double sided

Class 4 CPC: 320K RAM, 3" drive, 2. drive: 80 trk, DS

Class 5 CPC: 576K RAM, 3" drive, 2. drive: 80 trk, DS

Class 6 CPC: 576K RAM, 3" & 2. drive (80 trks, DS), 20 MB hard-disc.

Class 7 CPC: 2048K RAM, 4 internal & 4 external drives, 20 MB HD.

Only the space to read/write defines the CPC class. EPROM space (RO!) doesn't influence the CPC class.

FutureOS needs a class 2 CPC, it runs best with a class 4 CPC or higher.

Future OS Homepage:

http://www.FutureOS.de
http://Futureos.home.pages.de/
