Python Library Reference
Release 2.3.2

Guido van Rossum
Fred L. Drake, Jr., editor

October 3, 2003

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applica-
tions, from simple text processing scripts to interactive Web browsers.

While thePython Reference Manudéscribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability.
This library contains built-in modules (written in C) that provide access to system functionality such as file 1/O
that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are
explicitly designed to encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules
(which may or may not be available, depending on whether the underlying platform supports them and on the
configuration choices made at compile time). It also documents the standard types of the language and its built-in
functions and exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuemains the highest authority on syntactic and semantic questions.
Finally, the manual entitleExtending and Embedding the Python Interpretescribes how to add new extensions

to Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-In Objects 3
2.1 Built-in FUNCtioNs L e e 3
2.2 BUlt-INTYPES e 14
2.3 BUilt-in EXCEPLIONS e e e e 30
24 Bullt-inConstantS. 35

3 Python Runtime Services 37
3.1 sys — System-specific parametersand functions. L. 37
3.2 gc — Garbage Collectorinterface. e 43
3.3 weakref —Weakreferences. 45
3.4 fpectl — Floating pointexceptioncontrol 48
3.5 atexit —Exithandlers. 50
3.6 types — Namesforbuilt-intypes. e 51
3.7 UserDict — Class wrapper for dictionaryobjects 53
3.8 UserList — Classwrapperforlistobjects 53
3.9 UserString — Class wrapper for stringobjects 54
3.10 operator — Standard operatorsasfunctions. L. 55
3.11 inspect —Inspectliveobjects. L 59
3.12 traceback — Printorretrieve a stacktraceback. oo 0oL 63
3.13 linecache — Randomaccesstotextlines., 65
3.14 pickle — Python object serialization 65
3.15 cPickle — Afasterpickle 74
3.16 copy _reg — Registempickle supportfunctions. L. 74
3.17 shelve — Pythonobjectpersistence. 75
3.18 copy — Shallow anddeepcopyoperations 77
3.19 marshal — Internal Python object serialization. 78
3.20 warnings —Warningcontrol. 79
3.21 imp — Accessthémport internals. 81
3.22 pkgutil — Package extension utility, 84
3.23 code — Interpreterbaseclasses 85
3.24 codeop — Compile Pythoncode e 86
3.25 pprint — Datapretty printer e 87
3.26 repr — Alternaterepr() implementation. L Lo 89
3.27 new — Creation of runtime internal objects.o oL 91
3.28 site — Site-specific configurationhook. Lo 91
3.29 user — User-specific configurationhook 92
3.30 __builtin __—Built-infunctions. 93
3.31 __main __—Top-level scriptenvironment. oo 93
3.32 __future __ — Future statementdefinitions o oo Lo 93

4 String Services 95

4.1 string —Commonstringoperations e e 95
4.2 re —Regularexpressionoperations. e e 98
4.3 struct — Interpret strings as packed binarydata oL 108
4.4 (difflib — Helpers for computingdeltas 110
4.5 fpformat — Floating pointconversions. e 117
4.6 Stringl0 — Read and write stringsasfiles. 117
4.7 cStringl0O — Fasterversion oBtringlO L L 118
4.8 textwrap — Textwrappingandfiling. oL 118
49 codecs — Codecregistryandbaseclasses. 120
4.10 unicodedata —Unicode Database. 128
4.11 stringprep — Internet String Preparation. 129
Miscellaneous Services 131
5.1 pydoc — Documentation generator and online helpsystem. 131
5.2 doctest — Testdocstringsrepresentreality, 132
5.3 unittest —Unittestingframework. 139
5.4 test — Regressiontests package forPython. 150
5.5 test.test _support — Utility functionsfortests. 153
5.6 math — Mathematical functions. 153
5.7 cmath — Mathematical functions for complexnumbers 155
5.8 random — Generate pseudo-randomnumbers. oo 157
5.9 whrandom — Pseudo-random number generator. 159
5.10 bhisect — Array bisectionalgorithm 160
5.11 heapqg —Heap queue algorithm. L 161
5.12 array — Efficientarraysofnumericvalues. 163
5.13 sets — Unordered collections of uniqueelements. 166
5.14 itertools — Functions creating iterators for efficient looping. 168
5.15 ConfigParser = — Configurationfileparser., 174
5.16 fileinput — Iterate over lines from multiple input streams 176
5.17 xreadlines — Efficientiterationoverafile. oo . 178
5.18 calendar — General calendar-related functions. 178
5.19 cmd— Support for line-oriented command interpretets. 179
5.20 shlex —Simplelexicalanalysis 181
Generic Operating System Services 185
6.1 o0s — Miscellaneous operating systeminterfaces. 185
6.2 os.path — Common pathname manipulations. 202
6.3 dircache — Cacheddirectorylistings. 204
6.4 stat — Interpretingstat() results. 205
6.5 statcache — Anoptimizationofos.stat), 207
6.6 statvfs — Constants used withs.statvfs() oL 207
6.7 fileemp — File and Directory Comparisons o v v i i e 208
6.8 popen2 — Subprocesses with accessible I/Ostreams. 209
6.9 datetime —Basicdateandtimetypes. 211
6.10 time — Timeaccessand CoONVErSioNS v o v v v i v i it e e e e e 227
6.11 sched —Eventscheduler. e 232
6.12 mutex — Mutual exclusion support. e e 233
6.13 getpass — Portable passwordinput. 234
6.14 curses — Terminal handling for character-cell displays. 234
6.15 curses.textpad — Text input widget for curses programs 247
6.16 curses.wrapper — Terminal handler for cursesprograms 249
6.17 curses.ascii — Utilities for ASCllcharacters 249
6.18 curses.panel — A panel stack extensionforcurses.. 251
6.19 getopt — Parser forcommand lineoptions. oo 252
6.20 optparse — Powerful parser forcommand lineoptions. 254
6.21 tempfile — Generate temporary files and directories. 278
6.22 errno — Standard errnosystemsymbols. L Lo oL 279
6.23 glob — UNIx style pathname patternexpansion 285

10

6.24 fnmatch — UNIx filename patternmatching 285

6.25 shutii — High-levelfile operations 286
6.26 locale — Internationalizationservices 287
6.27 gettext — Multilingual internationalization services. 292
6.28 logging — Logging facility for Python. 300
Optional Operating System Services 315
7.1 signal — Sethandlersforasynchronousevents. 315
7.2 socket — Low-level networkinginterface. 317
7.3 select — Waiting for I/O completion. 326
7.4 thread — Multiplethreadsofcontrol. 327
7.5 threading — Higher-level threadinginterface. 328
7.6 dummy_thread — Drop-inreplacement for thtaread module 335
7.7 dummy_threading — Drop-in replacement for thiareading module 335
7.8 Queue —Asynchronizedqueueclass. e 336
7.9 mmap— Memory-mapped filesupport 337
7.10 anydbm — Generic access to DBM-style databases 338
7.11 dbhash — DBM-style interface to the BSD database libraty. 339
7.12 whichdb — Guess which DBM module created adatabase. 340
7.13 bsddb — Interface to Berkeley DB library 340
7.14 dumbdbm— Portable DBM implementation, 342
7.15 zlib — Compression compatible widzip oo 343
7.16 gzip — Supportforgzipfiles 345
7.17 bz2 — Compression compatible withwip2 o oo oL 346
7.18 zipfile — Workwith ZIP archives. 348
7.19 tarfile — Read and write tar archivefiles. oL 351
7.20 readline —GNUreadlineinterface. 356
7.21 rlcompleter — Completion function for GNU readline. 357
Unix Specific Services 359
8.1 posix — The most common POSIXsystemecalls. 359
8.2 pwd—Thepassworddatabase. 360
83 grp —Thegroupdatabase 361
8.4 crypt — Functiontocheck Mix passwords. 361
8.5 dl —CallCfunctionsinsharedobjects 362
8.6 dbm— Simple “database” interface. 363
8.7 gdbm— GNU'sreinterpretationofdbm. o 364
8.8 termios —POSIXstylettycontrol. 365
8.9 TERMIOS— Constants used with thermios module 366
8.10 tty — Terminalcontrolfunctions. e 366
8.11 pty — Pseudo-terminal utilities. e 366
8.12 fentl — Thefentl() andioctl() systemecalls., 367
8.13 pipes — Interface to shell pipelines 369
8.14 posixfile — File-like objects with locking support 370
8.15 resource — Resource usage information. o 0oL 372
8.16 nis — Interfaceto Sun’s NIS (YellowPages) 374
8.17 syslog — UNix sysloglibraryroutines. 374
8.18 commands— Utilities for runningcommands oL 375
The Python Debugger 377
9.1 DebuggerCommands e e 378
9.2 HowltWorks e 380
The Python Profiler 383
10.1 Introductiontothe profiler L 383
10.2 How Is This Profiler Different From The Old Profiler?. 383
10.3 InstantUsers Manual. e 384
10.4 What Is Deterministic Profiling?. 385
10.5 Reference Manual 386

11

12

13

10.6 Limitations. o e e e e e e 389

10.7 Calibration. e 389
10.8 Extensions — Deriving Better Profilers. oo 390
10.9 hotshot — High performance logging profiler 390
10.10timeit — Measure execution time of small code snippets 392
Internet Protocols and Support 395
11.1 webbrowser — Convenient Web-browser controller. 395
11.2 cgi — Common Gateway Interface support.. 397
11.3 cgitb — Traceback managerforCGlscripts., 404
11.4 urlib — Openarbitrary resourcesbyURL 404
11.5 urllib2 — extensible library foropeningURLS 409
11.6 httplib — HTTP protocolclient. 416
11.7 ftplib — FTP protocolclient. 419
11.8 gopherlib — Gopher protocolclient 422
11.9 poplib —POP3protocolclient. e 422
11.10imaplib — IMAP4 protocol client 424
11.11nntplib — NNTP protocol client. 428
11.12smtplib — SMTP protocolclient. 431
11.13telnetlib —Telnetclient 435
11.14urlparse — Parse URLsintocomponents. i 437
11.15SocketServer — A framework for networkservers. L. 438
11.16BaseHTTPServer —BasicHTTPserver it 440
11.17SimpleHTTPServer — Simple HTTP requesthandler 443
11.18CGIHTTPServer — CGl-capable HTTPrequesthandler 443
11.19Cookie — HTTP state management. i i v i i it e i e e e e 444
11.20xmlrpclib — XML-RPCclientaccess o i i i 448
11.21SimpleXMLRPCServer — Basic XML-RPCserver. 451
11.22DocXMLRPCServer — Self-documenting XML-RPC server. 453
11.23asyncore — Asynchronous sockethandler. 454
11.24asynchat — Asynchronous socket command/response handler. 456
Internet Data Handling 461
12.1 formatter = — Generic outputformatting oo 461
12.2 email — An email and MIME handlingpackage 465
12.3 mailcap — Mailcapfile handling.. 490
12.4 mailbox — Read various mailboxformats 491
12.5 mhlib — Accessto MH mailboxes 493
12.6 mimetools — Tools for parsing MIMEmessages v ... 494
12.7 mimetypes — Map filenamesto MIME types. e 496
12.8 MimeWriter — Generic MIME filewriter o o 498
12.9 mimify — MIME processing of mailmessages. 498
12.10multifile — Support for files containing distinctparts. 499
12.11rfc822 —Parse RFC 2822 mailheaders. 501
12.12base64 — Encode and decode MIME base64 data. 505
12.13binascii — Convert between binaryamdscil L o 505
12.14binhex — Encode and decode binhex4files o L. 507
12.15quopri — Encode and decode MIME quoted-printabledata 508
12.16uu — Encode and decode uuencodefiles L Lo 508
12.17xdrlib —Encode and decode XDRdata. oL 509
12.18netrc —netrcfile processing. e 511
12.19robotparser — Parserforrobots.txt 512
12.20csv — CSV File Readingand Writing. oo i 513
Structured Markup Processing Tools 517
13.1 HTMLParser — Simple HTMLand XHTML parser. v 517
13.2 sgmllib — Simple SGML parser. i i e 519
13.3 htmllib — AparserforHTMLdocuments 521
13.4 htmlentitydefs — Definitions of HTML general entities 523

14

15

16

17

18

19

13.5 xml.parsers.expat — Fast XML parsingusingExpat 523

13.6 xml.dom — The Document Object Model API. 530
13.7 xml.dom.minidom — Lightweight DOM implementation. 539
13.8 xml.dom.pulldom — Support for building partial DOMtrees 543
13.9 xml.sax —Supportfor SAX2 parsers. e 544
13.10xml.sax.handler —BaseclassesforSAXhandlers 545
13.11 xml.sax.saxutils — SAX Utilities 549
13.12xml.sax.xmlreader — Interface for XML parsers. 550
13.13xmllib — A parserfor XML documents. 554
Multimedia Services 559
14.1 audioop — Manipulateraw audiodata 559
14.2 imageop — Manipulaterawimagedata. oo 562
14.3 aifc — Read and write AIFFand AIFCfiles. o Lo 563
14.4 sunau — Read and write Sun AUfiles 565
145 wave — Read and write WAV files. L 567
14.6 chunk — Read IFFchunkeddata., 569
14.7 colorsys — Conversions between colorsystems. 570
14.8 rgbhimg — Read and write “SGIRGB”"files oo 571
14.9 imghdr — Determinethetypeofanimage 571
14.10sndhdr — Determine type of soundfile 572
14.11o0ssaudiodev — Access to OSS-compatible audio devices. 572
Cryptographic Services 577
15.1 hmac — Keyed-Hashing for Message Authentication. 577
15.2 md5— MD5 message digestalgorithm. oo oo 577
15.3 sha — SHA-1 message digestalgorithm. 578
15.4 mpz— GNU arbitrary magnitude integers oo 579
15.5 rotor — Enigma-like encryptionand decryption. 580
Graphical User Interfaces with Tk 583
16.1 Tkinter —PythoninterfacetoTcl/Tk. 583
16.2 Tix —ExtensionwidgetsforTK. e 594
16.3 ScrolledText ~ —Scrolled TextWidget., 599
16.4 turtle — Turtle graphicsfor Tk o 599
16.5 Idle o o 601
16.6 Other Graphical User Interface Packages 604
Restricted Execution 607
17.1 rexec — Restricted executionframework Lo 607
17.2 Bastion — Restrictingaccesstoobjects, 610
Python Language Services 613
18.1 parser — Access Pythonparsetrees. 613
18.2 symbol — Constants used with Pythonparsetrees 622
18.3 token — Constants used with Pythonparsetrees 622
18.4 keyword — Testing for Pythonkeywords 623
18.5 tokenize — Tokenizer for Pythonsource. oo 623
18.6 tabnanny — Detection of ambiguous indentation L. 624
18.7 pyclbr — Python class browser support L oL 624
18.8 py_compile — Compile Pythonsourcefiles. 625
18.9 compileall =~ — Byte-compile Pythonlibraries 625
18.10dis — Disassembler for Python bytecode. o oo 626
18.11distutils — Building and installing Python modules. 633
Python compiler package 635
19.1 Thebasicinterface e 635
19.2 LimMitations. o e e 636
19.3 Python Abstract Syntax o e 636

19.4 Using Visitorsto Walk ASTS o e e e

19.5 Bytecode Generation. e e e e e 641
20 SGI IRIX Specific Services 643
20.1 al —Audiofunctionsonthe SGI e 643
20.2 AL — Constantsused withthed module, 645
20.3 cd — CD-ROM accesson SGISYStems it i 645
20.4 fl —FORMS library for graphical userinterfaces. 648
20.5 FL — Constants used withtife module L. 653
20.6 flp — Functions for loading stored FORMS designs. 653
20.7 fm — Font Managelinterface. L 653
20.8 gl — Graphics Libraryinterface 654
20.9 DEVICE— Constants used withtlgd module 656
20.10GL— Constantsused with ttgd module 656
20.11limgfile — Supportfor SGlimglibfiles o 656
20.12jpeg — Read andwrite JPEGfiles. e 657
21 SunOS Specific Services 659
21.1 sunaudiodev — Accessto Sunaudiohardware. 659
21.2 SUNAUDIODEW- Constants used wittunaudiodev 660
22 MS Windows Specific Services 661
22.1 msvert — Useful routines fromthe MS VErruntime L. 661
22.2 _winreg —WINdOWS registry aCCeSS+« v v v i it e e e e 662
22.3 winsound — Sound-playing interface for Windows. 666
A Undocumented Modules 669
Al Frameworks e e e 669
A.2 Miscellaneous useful utilities. 669
A.3 Platform specificmodules L 669
Ad Multimedia. e e e 670
A5 Obsolete e 670
A.6 SGl-specific Extensionmodules. 671
B Reporting Bugs 673
C History and License 675
C.1 Historyofthesoftware e 675
C.2 Terms and conditions for accessing or otherwise using Python 676
Module Index 679
Index 683

Vi

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as nhumbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of aimport statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you dontaveto read it like a novel — you can also browse the table of contents (in front of

the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see randale) and read a section or

two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in
Types, Exceptions and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-In Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names
can override built-in names. Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within
a table) and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter
5 of thePython Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by themport statement. It mainly exists so that you can replace it with another
function that has a compatible interface, in order to change the semanticsiofgbe statement. For
examples of why and how you would do this, see the standard library motolelss andrexec . See
also the built-in modulémp, which defines some useful operations out of which you can build your own
__import __() function.

For example, the statemeritmport spam ' results in the following call: __import __('spam’,
globals(), locals(), [1) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’]) ". Note that even though

locals() and['eggs’] are passed in as arguments, themport __() function does not set the
local variable nameeggs ; this is done by subsequent code that is generated for the import statement.
(In fact, the standard implementation does not uséoitals argument at all, and uses iggobalsonly to
determine the package context of ihgport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up
till the first dot) is returnedpotthe module named bhyame However, when a non-empfsomlistargument

is given, the module named mameis returned. This is done for compatibility with the bytecode gener-
ated for the different kinds of import statement; when usingpbrt spam.ham.eggs ', the top-level
packagespam must be placed in the importing namespace, but when uioig‘* spam.ham import

eggs’, the spam.ham subpackage must be used to find #ggs variable. As a workaround for this
behavior, usgetattr() to extract the desired components. For example, you could define the following
helper:

def my_import(name):
mod = __import__(name)
components = name.split(".")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point
number. If the argument is a complex number, its magnitude is returned.

apply (function, arg%, keywordﬁ)
The functionargument must be a callable object (a user-defined or built-in function or method, or a class
object) and the@rgsargument must be a sequence. Timctionis called withargsas the argument list; the
number of arguments is the length of the tuple. If the optidegivordsargument is present, it must be a
dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the argument list.
Calling apply() s different from just callingunctiorn(args) , since in that case there is always exactly
one argument. The use apply() is equivalent tdunctiorn(* args ** keyword}. Use ofapply() is
not necessary since the “extended call syntax,” as used in the last example, is completely equivalent.

Deprecated since release 2.8Ise the extended call syntax instead, as described above.

basestring ()
This abstract type is the superclassgtr andunicode . It cannot be called or instantiated, but it can be
used to test whether an object is an instancgtiof or unicode . isinstance(obj, basestring)
is equivalent tasinstance(obj, (str, unicode)) . New in version 2.3.

bool ([x])
Convert a value to a Boolean, using the standard truth testing procedurés fidilse, this returnfalse ;
otherwise it returnsfrue . bool is also a class, which is a subclassimf . Classbool cannot be
subclassed further. Its only instances baégse andTrue .

New in version 2.2.1.
Changed in version 2.3: If no argument is given, this function retbeise .

buffer (objec{, offse[, size]])
The objectargument must be an object that supports the buffer call interface (such as strings, arrays, and
buffers). A new buffer object will be created which referencesdbjectargument. The buffer object will
be a slice from the beginning abject (or from the specifiedffse). The slice will extend to the end of
object(or will have a length given by theizeargument).

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a
call fails, but if it is false, callingpbjectwill never succeed. Note that classes are callable (calling a class
returns a new instance); class instances are callable if they haveadl __() method.

chr (i)
Return a string of one character whes®c1i code is the integdr For examplechr(97) returns the string
'a’ . Thisis the inverse afrd() . The argument must be in the range [0..255], inclusiedpeError
will be raised ifi is outside that range.

classmethod (function
Return a class method féunction

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
def f(cls, argl, arg2, ..): ..
f = classmethod(f)

It can be called either on the class (suctCa§)) or on an instance (such &%).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different tharr€or Java static methods. If you want those, segicmethod() in
this section. New in version 2.2.
cmp(x, y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative
if X < vy, zeroifx == yand strictly positive ik > vy.

4 Chapter 2. Built-In Objects

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules
as used by arithmetic operations.

compile (string, filename, kinEt flags[, donLinherit]])
Compile thestring into a code object. Code objects can be executed xan statement or evaluated by
a call toeval() . Thefilenameargument should give the file from which the code was read; pass some

recognizable value if it wasn’t read from a filegtring>’ is commonly used). Thieind argument spec-
ifies what kind of code must be compiled; it can’erec’ if string consists of a sequence of statements,
‘eval’ if it consists of a single expression, @ingle’ if it consists of a single interactive statement

(in the latter case, expression statements that evaluate to something elSetieanill printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single
newline character\py’), and the input must be terminated by at least one newline character. If line
endings are represented yn’ , use the stringeplace() = method to change them intm’

The optional argumentifagsanddont_inherit (which are new in Python 2.2) control which future state-
ments (see PEP 236) affect the compilatiorstsing. If neither is present (or both are zero) the code is
compiled with those future statements that are in effect in the code that is calling compileflébthergu-
ment is given andlont_inherit is not (or is zero) then the future statements specified bjlageargument
are used in addition to those that would be used anywalonf_inherit is a non-zero integer then tiflegs
argument is it — the future statements in effect around the call to compile are ignored.

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple statements.
The bitfield required to specify a given feature can be found aconepiler _flag attribute on the
_Feature instance inthe _future __ module.

complex ([real[, imag]])
Create a complex number with the vakegal + imagFj or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). limagis omitted, it defaults to zero and the function serves as a

numeric conversion function likimt() ,long() andfloat() . If both arguments are omitted, returns
0j .
delattr (object, namg
This is a relative obetattr() . The arguments are an object and a string. The string must be the name

of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
exampledelattr(x, ' foobar) is equivalenttalel x. foobar.

dict ([mapping—or—sequenc]e)
Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument is a mapping
object, return a dictionary mapping the same keys to the same values as does the mapping object. Otherwise
the positional argument must be a sequence, a container that supports iteration, or an iterator object. The
elements of the argument must each also be of one of those kinds, and each must in turn contain exactly two
objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a given key is
seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one™ 2, "two™ 3}

edict({one 2, 'two 3}

edict({'one”. 2, 'two: 3}.items())
edict({'one’. 2, 'two’: 3l.iteritems())
edict(zip((one’, 'two’), (2, 3)))
edict([['two’, 3], ['one’, 2]])

edict(one=2, two=3)

edict([(one’, 'two’][i-2], i) for i in (2, 3)])

2.1. Built-in Functions 5

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments
added.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attributes for that object. This information is gleaned from the objeatlict __
attribute, if defined, and from the class or type object. The list is not necessarily complete. If the object is a
module object, the list contains the names of the module’s attributes. If the object is a type or class object,
the list contains the names of its attributes, and recursively of the attributes of its bases. Otherwise, the list
contains the object’s attributes’ names, the names of its class’s attributes, and recursively of the attributes of
its class’s base classes. The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

[__builtins__’, ’°__doc__’, '~ _name__’, ’struct’]

>>> dir(struct)

[__doc__', ' _name__’, ’calcsize’, 'error’, 'pack’, 'unpack’]

Note: Becausdlir() is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases.

divmod (a, b)
Take two (hon complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators
apply. For plain and long integers, the result is the san{feaas b, a % b) . For floating point numbers
theresultig g, a % b), whereq is usuallymath.floor(a / b) but may be 1 less than that. In any
caseg * b + a % bisverycloseta, if a % bis non-zero it has the same signtaeind0 <= abs(a
% b) < abs(b).

Changed in version 2.3: Usirdivmod() with complex numbers is deprecated.

enumerate (iterable)
Return an enumerate objedterable must be a sequence, an iterator, or some other object which supports
iteration. Thenext() method of the iterator returned numerate() returns a tuple containing a
count (from zero) and the corresponding value obtained from iteratingit®rable enumerate() is
useful for obtaining an indexed serig§, seq[0]) , (1, seq[1]) , (2, seq[2]) , Newin
version 2.3.

eval (expressio[1, globals[, Iocals]])
The arguments are a string and two optional dictionaries.ekpeessiorargument is parsed and evaluated
as a Python expression (technically speaking, a condition list) usinglébalsandlocals dictionaries as
global and local name space. If tigéobals dictionary is present and lacks 'builtins__’, the current
globals are copied intglobalsbeforeexpressioris parsed. This means thaxpressiomormally has full
access to the standard builtin -~ __ module and restricted environments are propagated. loiteds
dictionary is omitted it defaults to thgdobalsdictionary. If both dictionaries are omitted, the expression is
executed in the environment whexeal is called. The return value is the result of the evaluated expression.
Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creatagi®()). In
this case pass a code object instead of a string. The code object must have been compiletepabsing
as thekind argument.

Hints: dynamic execution of statements is supported byeiee statement. Execution of statements from
a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around forexa®y or
execfile()

6 Chapter 2. Built-In Objects

execfile (fiIenameE, gIobaIs[, Iocals]])

This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and
does not create a new moddle.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence
of Python statements (similarly to a module) using giebalsandlocals dictionaries as global and local
namespace. If thivcalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wazefile() is called. The return value is

None.

Warning: The defaulocalsact as described for functidacals() below: modifications to the default
locals dictionary should not be attempted. Pass an exgbicials dictionary if you need to see effects of
the code orocalsafter functionexecfile() returns.execfile() cannot be used reliably to modify
a function’s locals.

file (filename{, mode{, bufsize]])

filter

float

Return a new file object (described earlier under Built-in Types). The first two arguments are the same
as forstdio 's fopen() : filenameis the file name to be openemhodeindicates how the file is to be
opened:’r' for reading,’'w’ for writing (truncating an existing file), an@’ opens it for appending
(which onsomeUNIx systems means thall writes append to the end of the file, regardless of the current
seek position).

Modes'r+' ,’'w+’ and’a+’ open the file for updating (note that+ truncates the file). Appent’
to the mode to open the file in binary mode, on systems that differentiate between binary and text files (else
it is ignored). If the file cannot be opend@Error s raised.

In addition to the standardpen() valuesmodemay be’U’ or’rU’ . If Python is built with universal
newline support (the default) the file is opened as a text file, but lines may be terminated by\any of

the Unix end-of-line conventiori\r' , the Macintosh convention dr\n’ , the Windows convention.

All of these external representations are seefras by the Python program. If Python is built without
universal newline suppomode’U’ is the same as normal text mode. Note that file objects so opened also
have an attribute callegewlines which has a value dflone (if no newlines have yet been seetw),
v\ , or a tuple containing all the newline types seen.

If modeis omitted, it defaults tor’ . When opening a binary file, you should appébd to themode

value for improved portability. (It's useful even on systems which don't treat binary and text files differently,
where it serves as documentation.) The optidndsizeargument specifies the file’s desired buffer size:

0 means unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately)
that size. A negativbufsizemeans to use the system default, which is usually line buffered for tty devices
and fully buffered for other files. If omitted, the system default is used.

Thefile() constructor is new in Python 2.2. The previous spellofen() , is retained for compatibil-
ity, and is an alias fofile()

(function, lis)
Construct a list from those elementslist for which functionreturns true list may be either a sequence,
a container which supports iteration, or an iteratolisifis a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementgsof
that are false (zero or empty) are removed.

Note that filter(function, listy is equivalent to [item for item in list if
function(item)] if function is not None and [item for item in list if item] if
function isNone.

([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possi-
bly signed decimal or floating point number, possibly embedded in whitespace; this behaves identical to
string.atof(X) . Otherwise, the argument may be a plain or long integer or a floating point number,
and a floating point number with the same value (within Python’s floating point precision) is returned. If no
argument is given, returrs0 .

2|t is used relatively rarely so does not warrant being made into a statement.

3Specifying a buffer size currently has no effect on systems that don'tdetvbuf() . The interface to specify the buffer size is not
done using a method that calietvbuf() , because that may dump core when called after any 1/O has been performed, and there’s no
reliable way to determine whether this is the case.

2.1. Built-in Functions 7

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. The specific set of strings accepted which cause these values to be returned depends entirely on
the C library and is known to vary.

getattr (object, nam[a, default])
Return the value of the named attributedobfect namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For exagetkfr(x, 'foobar’)
is equivalent toc.foobar . If the named attribute does not exidefaultis returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namp
The arguments are an object and a string. The result is 1 if the string is the name of one of the object’s
attributes, 0 if not. (This is implemented by calliggtattr(object namé@ and seeing whether it raises
an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.
New in version 2.2.

hex (X)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expres-
sion. Note: this always yields an unsigned literal. For example, on a 32-bit mattgre]l) vyields

'OxFffffff . When evaluated on a machine with the same word size, this literal is evaluated as -1; at
a different word size, it may turn up as a large positive number or rai§gvarflowError exception.
id (objec)

Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have the same
id() value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw _input(prompd) . Warning: This function is not safe from user errors! It
expects a valid Python expression as input; if the input is not syntactically vaign@axError will be
raised. Other exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes
this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and
history features.

Consider using theaw _input() function for general input from users.

int ([x[radix]])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespaeéixperameter
gives the base for the conversion and may be any integer in the range [2, 36], or zexbx i§ zero, the
proper radix is guessed based on the contents of string; the interpretation is the same as for integer literals.
If radix is specified and is not a string;TypeError is raised. Otherwise, the argument may be a plain or
long integer or a floating point number. Conversion of floating point numbers to integers truncates (towards
zero). If the argument is outside the integer range a long object will be returned instead. If no arguments
are given, return®.

intern (' string)

8 Chapter 2. Built-In Objects

Enterstringin the table of “interned” strings and return the interned string — whislrisgitself or a copy.

Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer
compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Changed
in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and before); you must
keep a reference to the return valuargern() around to benefit from it.

isinstance (object, classinfp
Return true if theobjectargument is an instance of tledassinfoargument, or of a (direct or indirect)
subclass thereof. Also return truecifassinfois a type object andbjectis an object of that type. ibbject
is not a class instance or an object of the given type, the function always returns falassififois neither
a class object nor a type object, it may be a tuple of class or type objects, or may recursively contain other
such tuples (other sequence types are not accepted)asiinfois not a class, type, or tuple of classes,
types, and such tuples,TaypeError exception is raised. Changed in version 2.2: Support for a tuple of
type information was added.

issubclass (class, classinfp
Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every entriagsinfowill be checked. In any other
case, &ypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (o[, sentine])
Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumemiust be a collection object which supports the iteration
protocol (the__iter __() method), or it must support the sequence protocol (thgetitem __()
method with integer arguments startingdat If it does not support either of those protocdlgpeError
is raised. If the second argumeséntine] is given, thero must be a callable object. The iterator created in
this case will callo with no arguments for each call to ii@xt() method; if the value returned is equal to
sentine] Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len ()
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([sequenc})
Return a list whose items are the same and in the same orderjaencs items. sequencenay be either
a sequence, a container that supports iteration, or an iterator objeegjuéncés already a list, a copy is

made and returned, similar sequende] . For instancelist('abc’) returns'a’, 'b’, 'c’]
andlist((1, 2, 3)) returns[1, 2, 3] . If noargumentis given, returns a new empty lfbt,
locals ()

Update and return a dictionary representing the current local symbol t&##ening: The contents of
this dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long ([x[radix]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed
number of arbitrary size, possibly embedded in whitespace; this behaves idensitaigaatol(X) .
Theradix argument is interpreted in the same way adritf) , and may only be given whenis a string.
Otherwise, the argument may be a plain or long integer or a floating point number, and a long integer with
the same value is returned. Conversion of floating point numbers to integers truncates (towards zero). If no
arguments are given, returfik.

map(function, list, ..)
Apply functionto every item oflist and return a list of the results. If additiorat arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter
than another it is assumed to be extended \Wtne items. If functionis None, the identity function
is assumed; if there are multiple list argumemsp() returns a list consisting of tuples containing the
corresponding items from all lists (a kind of transpose operation). lifharguments may be any kind of
sequence; the result is always a list.

2.1. Built-in Functions 9

max(s[, args...])
With a single argumers, return the largest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (such as a string, tuple or list).
With more than one argument, return the smallest of the arguments.

object ()
Return a new featureless objeobject() is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note: this
always yields an unsigned literal. For example, on a 32-bit macbatel) vyields'037777777777
When evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word
size, it may turn up as a large positive number or rais®earflowError exception.

open (filename{, mode{, bufsize]])
An alias for théfile() function above.

ord (c¢)
Return theascii value of a string of one character or a Unicode character. &rd(a’) returns the
integer97, ord(u'\u2020") returns8224 . This is the inverse athr() for strings and ofinichr()
for Unicode characters.

pow(X, y[z])
Returnx to the powely; if zis present, retur to the powely, moduloz (computed more efficiently than
pow(X, Yy) % 2). The arguments must have numeric types. With mixed operand types, the coercion rules
for binary arithmetic operators apply. For int and long int operands, the result has the same type as the
operands (after coercion) unless the second argument is negative; in that case, all arguments are converted
to float and a float result is delivered. For examfil@®*2 returns100, but10**-2 returns0.01 . (This
last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and
the second argument was negative, an exception was raised.) If the second argument is negative, the third
argument must be omitted. #is presentx andy must be of integer types, arydmust be non-negative.
(This restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argpovef)t returned
platform-dependent results depending on floating-point rounding accidents.)

property ([fget[, fse{, fdel[, doc]]]])
Return a property attribute for new-style classes (classes that deriveobjeat).

fgetis a function for getting an attribute value, likewisetis a function for setting, anftlel a function for
del'ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def getx(self): return self.__x
def setx(self, value): self._ x = value
def delx(self): del self._ x
X = property(getx, setx, delx, "I'm the 'X’ property.")

New in version 2.2.

range ([start,] stop{, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often tdised in
loops. The arguments must be plain integers. Ifdtepargument is omitted, it defaults th If the start
argument is omitted, it defaults tb The full form returns a list of plain integefsstart, start + step
start + 2 * step ...] . If stepis positive, the last element is the largetrt + i * stepless than
stop if stepis negative, the last element is the largesrt + i * stepgreater thastop stepmust not be
zero (or els&/alueError s raised). Example:

10 Chapter 2. Built-In Objects

>>> range(10)

[0, 1, 2, 3, 4,5,6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5,6, 7, 8, 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

>>> range(1, 0)

I

raw _input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns that.E&hen
is read EOFError is raised. Example:

>>> s = raw_input(-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus"”

Ifthereadline module was loaded, theaw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequem{einitializer])
Apply functionof two arguments cumulatively to the itemssg#quencefrom left to right, so as to reduce
the sequence to a single value. For examgléyuce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculateg(((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is emipigliZér is not given
andsequenceontains only one item, the first item is returned.

reload (modulg
Re-parse and re-initialize an already importeddule The argument must be a module object, so it must
have been successfully imported before. This is useful if you have edited the module source file using an
external editor and want to try out the new version without leaving the Python interpreter. The return value
is the module object (the same as theduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the fimmport statement for it does not bind
its name locally, but does store a (partially initialized) module objedysimodules . To reload the
module you must firsimport it again (this will bind the name to the partially initialized module object)
before you cameload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a name that was defined by the old version, the old definition remains. This
feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for
sys, __main __and__builtin __. In many cases, however, extension modules are not designed to be
initialized more than once, and may falil in arbitrary ways when reloaded.

If a module imports objects from another module usiram ... import ..., callingreload() for
the other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to ugeport and qualified namesr(odulenamég instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the

2.1. Built-in Functions 11

method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

repr (objec)

Return a string containing a printable representation of an object. This is the same value yielded by conver-
sions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For
many types, this function makes an attempt to return a string that would yield an object with the same value
when passed teval()

round (x[, n])

Return the floating point value rounded ton digits after the decimal point. I is omitted, it defaults to

zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minusn; if two multiples are equally close, rounding is done away from 0 (so. for examgalad(0.5)

is 1.0 andround(-0.5) is-1.0).

setattr (object, name, valye

slice

This is the counterpart afetattr() . The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute,
provided the object allows it. For examp$stattr(%, ' foobar, 123) s equivalent tox. foobar =

123.

([start,] sto;{, step])
Return a slice object representing the set of indices specifieaiype(start, stop step . Thestartand
steparguments default thione. Slice objects have read-only data attribugest , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For exampa¢start:stop:step] " or ‘a[start:stop, i] '

staticmethod (function

Return a static method fdunction
A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
def f(argl, arg2, ...): ...
f = staticmethod(f)

It can be called either on the class (suctCaf§)) or on an instance (such &%).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java+or. G-or a more advanced concept, see
classmethod() in this section. New in version 2.2.

sum(sequenc[a start])

Sumsstart and the items of aequencefrom left to right, and returns the totadtart defaults to0. These-
quencés items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
sequence of strings is by callifgoin(sequence. Note thatsum(range(n), m) is equivalent to
reduce(operator.add, range(n), m) New inversion 2.3.

super (type[object-or-typd)

Return the superclass tyfpe If the second argument is omitted the super object returned is unbound. If the
second argument is an objeidinstance(obj, type must be true. If the second argument is a type,
issubclass(type2 type must be truesuper() only works for new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super(C, self).meth(arg)

New in version 2.2.

str([object])

Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference wittrepr(objec) is thatstr(objec) does not always attempt to return a string

12

Chapter 2. Built-In Objects

that is acceptable teval() ; its goal is to return a printable string. If no argument is given, returns the
empty string,”

tuple ([sequenc})
Return a tuple whose items are the same and in the same ordepasncs items. sequencanay be
a sequence, a container that supports iteration, or an iterator objestguences already a tuple, it is
returned unchanged. For instantugle('abc’) returns(’a’, 'b’, 'c’) andtuple([1, 2,
3]) returns(l, 2, 3) . If noargumentis given, returns a new empty tugle,

type (objec)
Return the type of anbject The return value is a type object. The standard motiydes defines names
for all built-in types that don't already have built-in names. For instance:

>>> import types
>>> x = ’abc’
>>> if type(x) is str: print "lt's a string"

I's a string
>>> def f(): pass

>>> if type(f) is types.FunctionType: print "It's a function”
I's a function

Theisinstance() built-in function is recommended for testing the type of an object.

unichr (i)
Return the Unicode string of one character whose Unicode code is the intEgeexampleunichr(97)
returns the string’'a’ . This is the inverse obrd() for Unicode strings. The argument must be in the
range [0..65535], inclusivé/alueError s raised otherwise. New in version 2.0.

unicode ([objec{, encoding{, errors]]])
Return the Unicode string version objectusing one of the following modes:

If encodingand/orerrorsare givenunicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding Theencodingparameter is a string giving the name of
an encoding; if the encoding is not knowlmgokupError is raised. Error handling is done according
to errors; this specifies the treatment o