Getting Started with CUT

Sergei Gnezdov

November 19, 2004

1 Introduction

Cut is a unit testing framework for C, C++ and Objective-C. This document
covers version 2.3 of CUT. Our goal is to help you to get started with CUT.
To download CUT, go to http://www.falvotech.com/projects/cut.php .

2 Getting Ready

Cut comes in source code form. You will have to compile it to start us-
ing. You should have no problem to compile it on BSD (FreeBSD) or Linux
machines.

To compile run

make

command without arguments. This should create cutgen application.

3 Test Driven Development in C with CUT

3.1 Overview

To show the usage of CUT we will create a very simple C project. You
will have to create a directory for your project. It is referenced as Project
directory further on. The directory will contain the following files:

o Makefile
e Main.c

e Compute.h

e TestCompute.c
e Compute.c

e cut.h

3.2 Creating Makefile

Create Makefile with the following content:

CC = gcc

LD = gcc

MODULES = Compute

OBJS = $(MODULES:%=%.0)

TESTS = $ (MODULES:%=Test%.c)
TESTS_OBJS = $(MODULES:%=Test %.0)
LIBS =

CCOPTS = —c

DEBUG =

default target
help :

echo 7" Type 'make application’ to build the application.’
echo 7Type "make check’ to biuld the application.”

top level target to create production application
application: $(OBJS) Main.o
$(LD) $(LDOPTS) $(MODULES:%=%.0) Main.o $(LIBS) —o app

top level target to run test cases
test : cutcheck
./ cutcheck

top level target to clean up the project directory
clean:
—rm *.o0 app cutcheck

cutcheck.c: $(TESTS)
cutgen —o cutcheck.c $(TESTS)

cutcheck: $(OBJS) $(TESTS.OBJS) cutcheck.o
$(LD) $(LDOPTS) $(OBJS) $(TESTS.OBJS) $(LIBS)\

cutcheck .o —o cutcheck

$(CC) $(CCOPTS) $(DEBUG) —o $Q@ $<

3.3 Defining Sum Function

Compute.h header defines a function we want to test:

#ifndef COMPUTE_HINCLUDED
#define COMPUTE_HINCLUDED

/* Summarizes two numbers x/
int sum(int, int);

#endif

3.4 Creating Test Case

For consistency, the test file name is based on the name of the header file
beeing tested. Append Test prefix and replace h with ¢ extension. TestCom-
pute.c file has the following content:

#include <stdio .h>
#include 7 cut.h”
#include ” Compute.h”

void __CUT__Sum (void)

{
ASSERT (3 == sum (1,2), ” Check sum”);

}

TestCompute.c does not compile yet. See it for yourself with the following
command:

make TestCompute.o

The compileation fails because the compiler can’t find cut.h file. Copy cut.h
file from the cut-2.3 project directory into our project directory.

Run
make TestCompute.o

again. This should create TestCompute.o file.

3

4 Implementing sum Function

Create Compute.c file:

int sum(int a, int b)

{

}
Run

return 0;

make test
now. It should fail with the message similar to the following:

TestCompute.c(7): Check sum
TestCompute.c(7): Failed expression: 3 == sum(1,2)

This is because we did not implement sum function yet.
Change Compute.c to contain the following code:

int sum(int a, int b)

{
}

and run make test again. The test should pass now.

return a+b;

4.1 Creating main application

Since our function operates as expected we can create a main application
Now:

#include <stdio .h>
#include ” Compute.h”

int main(void)

{
printf("%i\n”, sum(3,2));
return 0;

}

Run make application to see the result.

